ДИСПЕРСИЯ ДИЭЛЕКТРИЧЕСКИХ КОЭФФИЦИЕНТОВ И *АС*-ПРОВОДИМОСТИ МОНОКРИСТАЛЛОВ TIGa_{1-x}Co_xS₂ В РАДИОЧАСТОТНОМ ДИАПАЗОНЕ

С. Н. Мустафаева

Институт физики Национальной академии наук Азербайджана, Баку

Получена 27 марта 2009 г.

В слоистых монокристаллах $TlGa_{1-x}Co_xS_2$ (x = 0.005; 0.01) изучены частотные зависимости диэлектрических характеристик и ас-проводимости (σ_{ac}) поперек слоев в частотном диапазоне $f = 5 \cdot 10^4 \div 3.4 \cdot 10^7$ Гц. Установлено, что в $TlGa_{1-x}Co_xS_2$ наряду с потерями на электропроводность имеют место также релаксационные потери. Обнаружено, что в частотной области $5 \cdot 10^4 \div 2.10^7$ Гц в монокристаллах $TlGa_{1-x}Co_xS_2$ имеет место прыжковый механизм переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность (N_F) и энергетический разброс (ΔE) этих состояний, среднее время (τ) и расстояние (R) прыжков. Изучено влияние состава кристаллов $TlGa_{1-x}Co_xS_2$ на их диэлектрические коэффициенты. Установлено, что с ростом содержания кобальта в кристаллах N_F и ΔE возрастают, а τ и Rуменьшаются.

Ключевые слова: электродинамика конденсированных сред, слоистые монокристаллы.

ВВЕДЕНИЕ

Слоистые монокристаллы TlGaS₂ характеризуются довольно высокой плотностью локализованных вблизи уровня Ферми состояний (N_F). Значения N_F , вычисленные на основе экспериментальных результатов измерения dc и ac-проводимости монокристаллов TlGaS₂, составляли ~ 2.0·10¹⁸ эB⁻¹ см⁻³ [1,2]. Легирование этих монокристаллов позволяет управлять их физическими свойствами. Так, например, в [3] было показано, что частичное замещение галлия в TlGaS₂

марганцем приводит к значительному уменьшению диэлектрической проницаемости, среднего времени и расстояния прыжков, а также увеличению плотности состояний на уровне Ферми.

Целью настоящей работы явилось изучение влияния частичного замещения галлия кобальтом в TlGaS₂ на диэлектрические свойства полученных кристаллов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характер взаимодействия в системе TlGaS₂ – TlCoS₂ был изучен [4] методами физико-химического анализа. Исходные соединения TlGaS₂ и TlCoS₂ были синтезированы в вакууме (10^{-3} Па) в кварцевых ампулах прямым сплавлением высокочистых (\geq 99.999%) элементов (Tl, Ga, S, Co), взятых в стехиометрическом соотношении. Синтезированные образцы для гомогенизации были подвергнуты отжигу в вакууме при температуре 440 К в течение 20 суток. Установлено, что при комнатной температуре на основе TlGaS₂ образуются твердые растворы TlGa_{1-x}Co_xS₂ вплоть до 15 мол.% TlCoS₂. Методом Бриджмена были выращены образцы монокристаллов TlGa_{1-x}Co_xS₂ (x = 0.005 и 0.01). Указанные составы кристаллизовались в тетрагональной сингонии с параметрами кристаллической решетки a = 7.29; c = 29.90 Å.

Измерения диэлектрических свойств монокристаллов $TlGa_{1-x}Co_xS_2$ (x = 0.005 и 0.01) на переменном токе произведены резонансным методом с помощью куметра TESLA BM560. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 \div 3.4 \cdot 10^7$ Гц.

Монокристаллические образцы из TlGa_{1-x}Co_xS₂ для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической *C*-оси кристалла. В качестве электродного материала использована серебряная паста. Толщина образцов из TlGa_{1-x}Co_xS₂ составляла 100 –

140 мкм, а площадь обкладок $-7.6 \cdot 10^{-2}$ см². Все диэлектрические измерения монокристаллических образцов были проведены при 300 К. Воспроизводимость положения резонанса составляла по емкости ± 0.2 пкФ, а по добротности ($Q = 1/tg \delta$) $\pm 1.0 \div 1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3 – 4% для ϵ и 7% для $tg \delta$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены результаты измерения тангенса угла диэлектрических потерь $tg\delta$ при частотах 5·10⁴ ÷ 3.4·10⁷ Гц в монокристаллах TlGa_{1-x}Co_xS₂ (x = 0; 0.005 и 0.01).

Рис. 1. Частотные зависимости тангенса угла диэлектрических потерь для монокристаллов TlGaS₂ (1); TlGa_{0.995}Co_{0.005}S₂ (2) и TlGa_{0.99}Co_{0.01}S₂ (3) при T = 300 K.

Из рис. 1 видно, что все приведенные частотные зависимости $tg\delta$ имеют монотонно спадающую ветвь. Уменьшение $tg\delta$ с частотой по гиперболическому закону свидетельствует о том, что при этих частотах основным видом диэлектрических потерь в монокристаллах TIGa_{1-x}Co_xS₂ являются потери на электропроводность. В кристалле TIGaS₂ при $f > 10^6$ Гц наблюдалось существенное возрастание $tg\delta$ с увеличением частоты вплоть до $3 \cdot 10^7$ Гц. Наличие возрастающей ветви на зависимости $tg\delta$ (f) позволяет сделать вывод о том, что наряду с потерями на электропроводность вносят свой вклад и релаксационные потери. В отличие от монокристалла TIGaS₂ в образцах TIGa_{1-x}Co_xS₂ (x = 0.005; 0.01) после спада $tg\delta$ наблюдалось незначительное его возрастание при $f > 2 \cdot 10^7$ Гц. Как видно из рис. 1 частота, при которой начинают проявляться релаксационные потери, смещается в сторону более высоких частот при частичном замещении галлия в TIGaS₂ кобальтом.

В области частот 5·10⁴ + 3.4·10⁷ Гц измерена также электрическая емкость образцов TIGa_{1-x}Co_xS₂. По значениям емкости (*C*) образцов при различных частотах рассчитаны значения диэлектрической проницаемости ($\varepsilon = C \cdot L/\varepsilon_0 S$; *L* – толщина кристалла; *S* – площадь обкладок конденсатора; ε_0 – диэлектрическая постоянная). На рис. 2 представлены частотные зависимости ε для образцов TIGa_{1-x}Co_xS₂ различного состава (кривые 1 – 3). Видно, что при введении кобальта в кристаллы TIGaS₂ диэлектрическая проницаемость значительно уменьшается при всех указанных частотах. Из рис. 2 видно, что в образцах TIGaS₂ и TIGa_{0.995}Co_{0.005}S₂ не наблюдается ощутимое изменение ε с изменением частоты. А в образце TIGa_{0.99}Co_{0.01}S₂ диэлектрическая проницаемость монотонно уменьшалась с ростом частоты, что свидетельствует о релаксационной дисперсии.

На рис. З приведены дисперсионные кривые коэффициента диэлектрических потерь ($\varepsilon'' = \varepsilon t g \delta$) в монокристаллах TlGa_{1-x}Co_xS₂ различного состава. Видно, что при

введении кобальта в кристаллы TlGaS₂ характер дисперсионных кривых $\varepsilon''(f)$ существенно изменяется. Если для TlGaS₂ кривая $\varepsilon''(f)$ имеет две ветви: слабо спадающую и резко возрастающую при $f > 10^6$ Гц, то в случае TlGa_{1-x}Co_xS₂ кривые $\varepsilon''(f)$ характеризуются довольно ощутимым спадом вплоть до 2·10⁷ Гц, после чего значения ε'' проявляют тенденцию к увеличению.

Рис. 2. Частотная дисперсия диэлектрической проницаемости для монокристаллов $TlGaS_2(1)$; $TlGa_{0.995}Co_{0.005}S_2(2)$ и $TlGa_{0.99}Co_{0.01}S_2(3)$.

Нами изучены также частотные зависимости ас-проводимости монокристаллов TIGa_{1-x}Co_xS₂ при T = 300 K (рис. 4). В области частот $f = 5 \cdot 10^4 \div 10^6$ Гц *ac*-проводимость монокристалла TIGaS₂ (кривая 1) изменялась по закону $\sigma_{ac} \sim f^{0.8}$, а при $f = 10^6 \div 3 \cdot 10^7$ Гц – по квадратичному закону $\sigma_{ac} \sim f^{-2}$. В [5] показано, что проводимость, пропорциональная f^{-2} , обусловлена оптическими переходами в полупроводниках и вносит преобладающий вклад при высоких частотах. Дисперсионные кривые $\sigma_{ac}(f)$ образцов TIGa_{1-x}Co_xS₂ (рис. 4, кривые 2 и 3) характеризуются зависимостью $\sigma_{ac} \sim f^{0.8}$ в более широкой области частот Δf : при x = 0.005 $\Delta f = (5 \cdot 10^4 \div 10^7)$ Гц, а при x = 0.01 значение $\Delta f = (5 \cdot 10^4 \div 2 \cdot 10^7)$ Гц, т.е. увеличение содержания кобальта в кристаллах приводит к удлинению участка $f^{0.8}$. При дальнейшем увеличении частоты зависимость σ_{ac} от f становилась суперлинейной.

Рис. 3. Дисперсионные кривые коэффициента диэлектрических потерь в монокристаллах TlGaS₂ (1); TlGa_{0.995}Co_{0.005}S₂ (2) и TlGa_{0.99}Co_{0.01}S₂ (3).

Наблюдение участка $\sigma_{ac} \sim f^{0.8}$ на кривых $\sigma_{ac}(f)$ свидетельствует о том, что в указанном диапазоне частот проводимость монокристаллов TlGa_{1-x}Co_xS₂ обусловлена прыжками носителей заряда между локализованными вблизи уровня Ферми состояниями. В [6] для такого механизма переноса заряда было получено следующее выражение:

$$\sigma_{ac}(f) = (\pi^3 / 96) \cdot e^2 \kappa T N_F^2 a^5 f [ln (v_{ph} / f)]^4,$$
(1)

где *е* – заряд электрона, κ – постоянная Больцмана, N_F – плотность локализованных состояний вблизи уровня Ферми, $a = 1/\alpha$ – радиус локализации, α – постоянная спада волновой функции локализованного носителя заряда $\Psi \sim e^{-\alpha r}$, v_{ph} – фононная частота.

Рис. 4. Частотные зависимости *ас*-проводимости монокристаллов TlGaS₂ (1); TlGa_{0.995}Co_{0.005}S₂ (2) и TlGa_{0.99}Co_{0.01}S₂ (3).

По экспериментально найденным значениям $\sigma_{ac}(f)$ и с помощью формулы (1) вычислили плотность состояний на уровне Ферми. Для монокристаллических образцов TlGa_{1-x}Co_xS₂ (x = 0.005; 0.01) значения N_F составляли соответственно 7.9·10¹⁸ и 9.1·10¹⁸ эВ⁻¹·см⁻³. Для образца TlGaS₂ $N_F = 2.1·10^{18}$ эВ⁻¹·см⁻³ [2]. При вычислении N_F для радиуса локализации образцов TlGa_{1-x}Co_xS₂ брали значение a = 14 Å по аналогии с моносульфидом галлия [7], являющимся бинарным аналогом TlGaS₂. Значение *v*_{ph} для TlGaS₂ – порядка 10¹² Гц [8].

Теория прыжковой проводимости на переменном токе позволяет по формуле [5]:

$$R = (1/2\alpha) \ln \left(v_{ph} / f \right) \tag{2}$$

определить среднее расстояние прыжков. В формуле (2) $1/f = \tau$ – среднее время прыжков. Значение τ^{-1} находится как средняя частота, при которой для σ_{ac} наблюдается $f^{0.8}$ – закон. В монокристаллах TlGa_{1-x}Co_xS₂ значения τ составляли 0.2 мкс для x = 0.005 и 0.1 мкс для x = 0.01. Среднее время прыжков в монокристаллических образцах TlGa_{1-x}Co_xS₂ было значительно меньше, чем в TlGaS₂ (в TlGaS₂ $\tau = 2.0$ мкс [2]). Вычисленные по формуле (2) значения R для монокристаллов TlGa_{1-x}Co_xS₂ с составами x = 0.005 и 0.01 составили 86 и 81Å, соответственно. Для монокристалла TlGaS₂ R = 103Å [2]. Значения R примерно в 6 раз превышают среднее расстояние между центрами локализации носителей заряда в изученных монокристаллах (в TlGaS₂ R/a = 7.3 [2]).

По формуле [5]:

$$\Delta E = 3/(2 \pi R^3 N_F) \tag{3}$$

оценили энергетический разброс локализованных в окрестности уровня Ферми состояний. Значения ΔE , полученные для TlGa_{1-x}Co_xS₂, составили 9·10⁻² эВ при x = 0.005 и $9.7 \cdot 10^{-2}$ эВ при x = 0.01. Концентрация глубоких ловушек, ответственных за *ac*-проводимость, определенная по формуле: $N_t = N_F \Delta E$, составляла 7.1·10¹⁷ см⁻³ в TlGa_{0.995}Co_{0.005}S₂ и 8.8·10¹⁷ см⁻³ в TlGa_{0.99}Co_{0.01}S₂.

На рис. 5 представлены для сравнения зависимости N_F , τ и R от состава монокристаллов TlGa_{1-x}Co_xS₂. Из этих зависимостей видно, что с ростом содержания кобальта в кристаллах плотность состояний, локализованных вблизи уровня Ферми, возрастает, а среднее время и расстояние прыжков уменьшаются.

Рис. 5. Зависимость параметров N_F , τ и R от состава монокристаллов TlGa_{1-x}Co_xS₂.

ЗАКЛЮЧЕНИЕ

Таким образом, изучена частотная дисперсия диэлектрических свойств $TlGa_{1-x}Co_xS_2$ монокристаллов различного Установлена природа состава. диэлектрических потерь, механизм переноса заряда и оценены: плотность состояний вблизи уровня Ферми, их энергетический разброс, среднее время и расстояние прыжков, а также концентрация глубоких ловушек, ответственных за ас-проводимость. Обнаружено, что частичное замещение галлия кобальтом в монокристаллах TlGaS₂ позволяет управлять диэлектрическими характеристиками полученных кристаллов.

СПИСОК ЛИТЕРАТУРЫ

- Мустафаева С.Н., Алиев В.А., Асадов М.М. Прыжковая проводимость на постоянном токе в монокристаллах TlGaS₂ и TlInS₂ // ФТТ. 1998. Т. 40. № 4. С. 612 – 615.
- Мустафаева С.Н. Частотная дисперсия диэлектрических коэффициентов слоистых монокристаллов TlGaS₂ // ФТТ. 2004. Т. 46. № 6. С. 979 – 981.
- Мустафаева С.Н. Диэлектрические свойства монокристаллов TlGa_{1-x}Mn_xS₂ (0 ≤ x < 0.03) // Изв. РАН. Неорганические материалы. 2006. Т. 42. № 5. С. 530 – 533.
- Mustafaeva S.N., KerimovaE.M., Seidov F.M., Jabbarly A.I. Novel Thermoelectric Materials on the Base of TlGaS₂ – TlCoS₂ // Book of Abstracts of 13-th International Conference on Ternary and Multinary Compounds (ICTMC 13). Paris. France. October 14 – 18. 2002. P. 125.
- Мотт Н., Девис Э. Электронные процессы в некристаллических веществах. М.: Мир. 1974. 472 с.
- Pollak M. Frequency dependence of conductivity in amorphous solids // Philos. Mag. 1971. V. 23. P. 519 – 542.
- Augelli V., Manfredotti C., Murri R. et al. Anomalous impurity conductivity in n-GaSe and n-GaS // L. Nuovo Cimento. B. 1977. V. 38. No 2. P. 327 336.
- Аллахвердиев К.Р., Виноградов Е.А., Нани Р.Х. и др. Колебательный спектр кристаллов TlGaS₂, TlGaSe₂ и β-TlInS₂ // Физические свойства сложных полупроводников. Баку: Элм. 1982. С. 55 – 63.