“ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ” N 8, 2013

оглавление

УДК 537.874

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ОСЛАБЛЕНИЯ РАДИОВОЛН СТРОИТЕЛЬНЫМИ И ЭКРАНИРУЮЩИМИ
МАТЕРИАЛАМИ В ДИАПАЗОНЕ ЧАСТОТ 800 МГц – 17 ГГц

 

А. Н. Катруша

 Военно-учебный научный центр Военно-воздушных сил «Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина»
 

Получена 23 июля 2013 г.

 

Аннотация. Экспериментально получены коэффициенты прохождения радиоволн для различных материалов в широком диапазоне частот; рассмотрены типовые трассы распространения радиоволн при организации экранирования оконного проема здания; проведен физический анализ полученных результатов.

Ключевые слова: распространение радиоволн, экспериментальные исследования, электромагнитное экранирование.

Abstract. Factors of passage of radio-waves for various materials in a wide range of frequencies are experimentally received; typical lines of propagation of radio-waves are considered at the organisation of shielding of a window aperture of a building; the physical analysis of the received results is carried out.

Keywords: propagation of radio-waves, experimental researches, electromagnetic shielding.

 

Введение.

Оценка уровня сигнала при распространении радиоволн в условиях городской застройки необходима при решении таких важных задач, как планирование и организация сетей мобильной радиосвязи (в том числе сверхширокополосных), беспроводных компьютерных сетей, а также формирования помех с целью предотвращения утечки информации по радиоканалу. Кроме того в настоящее время представляет интерес исследование ослабления различными препятствиями сверхкоротких электромагнитных импульсов при их деструктивном воздействии на радиоэлектронную аппаратуру, находящуюся внутри здания.

Данные по ослаблению радиоволн при их прохождении внутрь здания могут быть найдены в справочной литературе, например [1,2], однако они приводятся или в обобщенном виде для ряда выборочных частот, или в виде усредненных значений в весьма широких диапазонах частот (например, в [2] величина ослабления при прохождении радиоволн внутрь здании усреднена для диапазона частот 500 МГц – 3 ГГц). Очевидно, что для адекватной оценки уровней ослабления сверхширокополосных сигналов и сверхкоротких импульсов необходимы более детальные сведения о коэффициентах ослабления радиоволн различными препятствиями в полосе частот сигналов (импульсов), достигающей несколько гигагерц.

Для исследований выбран диапазон частот 800 МГц – 17 ГГц, охватывающий диапазоны работы современных сетей мобильной радиосвязи, беспроводной передачи данных, сверхширокополосных систем связи, а также наиболее актуальные диапазоны частот сверхкоротких электромагнитных импульсов.
 

Результаты экспериментальных исследований.

Рассмотрим каноническую задачу прохождения радиоволн внутрь здания при нормальном падении волны на фронтальную стену здания. Очевидно, что наименьшее ослабление ожидается при распространении радиоволн через оконный проем. В связи с этим задача экранирования помещений решается путем применения оконных штор из экранирующих материалов.

Необходимо отметить, что для экранирующих материалов известны только коэффициенты прохождения сквозной волны, полученные в лабораторных условиях [3]. Поэтому представляет интерес исследование характеристик экранирующих материалов на трассах распространения в составе препятствия «окно + экранирующий материал», а также влияние дифракционных компонент на параметры экранирования.

Экспериментальная установка для измерения коэффициентов прохождения радиоволн через препятствия состояла из передатчика, приемника и двух встречно направленных рупорных антенн П6-23М. В качестве передатчика использовался генератор сигналов Rhode&Swarz SMF 43, приемником служил анализатор спектра Rhode&Swarz FSU 26.
 

Прохождение радиоволн через стеклопакет.

Экспериментальные исследования прохождения радиоволн через окно проводились с использованием стандартного двухкамерного стеклопакета (три листа стекла) в составе пластикового оконного блока. Передающая и приемная антенны размещались встречно на удалении 1,5 м от окна (рис.1).

 

Рис.1. Схема измерения коэффициента прохождения через стеклопакет

 

Измерялся уровень мощности сигнала  на входе анализатора спектра при наличии стеклопакета, где  - частота сигнала. Затем створка окна открывалась, и измерялся уровень сигнала  при отсутствии препятствия между антеннами (в свободном пространстве). Коэффициент прохождения радиоволн через стеклопакет относительно свободного пространства рассчитывался по формуле

Частотная зависимость , полученная на основе проведенных измерений, представлена на рис. 2.

 

Рис.2. Частотная зависимость коэффициента прохождения радиоволн через стеклопакет

 

Анализ рисунка показывает, что коэффициент прохождения через стеклопакет существенно зависит от частоты. На частотах 800 МГц – 3 ГГц наблюдается осциллирующий характер коэффициента прохождения, однако средний уровень равен 0 дБ. Вероятно, эти осцилляции обусловлены отражением радиоволн от металлических составляющих оконной конструкции (на частотах 1-2 ГГц диаграмма направленности антенны П6-23М достаточно широкая, поэтому отраженные волны могут вносить ощутимый вклад в принимаемый сигнал). В диапазоне 3 – 5,8 ГГц ослабление радиоволн незначительное (до -4 дБ). На частотах 5,8 – 13 ГГц наблюдается существенное ослабление сигнала до -20 дБ. В диапазоне 13 – 16 ГГц коэффициент прохождения не превышает -2 дБ. Выше 16 ГГц снова наблюдается увеличение ослабления. Такой характер частотной зависимости коэффициента прохождения объясняется зависимостью диэлектрической проницаемости стекла от частоты (а, следовательно, частотной зависимостью коэффициента отражения радиоволн от стекла).

Для качественного выявления указанной зависимости проведены дополнительные измерения. Сначала измерялся уровень сигнала при прохождении радиоволн через стеклопакет . Затем параллельно стеклопакету размещалось дополнительное стекло на некотором расстоянии d (рис. 3) и измерялся уровень сигнала . Коэффициент прохождения через дополнительное стекло в составе препятствия «стеклопакет + стекло» рассчитывался по формуле

 

Рис. 3 Схема измерения коэффициента прохождения радиоволн через стеклопакет и дополнительное стекло

 

Очевидно, что коэффициент прохождения препятствия «стеклопакет + дополнительное стекло» относительно свободного пространства можно рассчитать как , однако для оценки ослабления, вносимого дополнительным стеклом, рассмотрим зависимость .

На рис. 4 приведены частотные зависимости коэффициента прохождения радиоволн  при расстоянии между стеклопакетом и дополнительным стеклом d=30 см и 40 см, а также при развороте дополнительного стекла в горизонтальной плоскости на угол 450 .

 

Рис. 4. Частотные зависимости коэффициента прохождения радиоволн через дополнительное стекло

 

Из анализа рис. 4 можно сделать следующие выводы. В диапазоне 3 – 13 ГГц наблюдаются существенные периодические осцилляции коэффициента прохождения, достигающие размаха в 20 дБ. Такой резонансный характер коэффициента прохождения объясняется многочисленными переотражениями между стеклопакетом и дополнительным стеклом. Причем при увеличении расстояния d с 30 см до 40 см частота осцилляций увеличивается, поскольку разность хода между различными лучами, приходящими в точку приема возрастает. При развороте дополнительного стекла на 450 периодические осцилляции прекращаются, однако на некоторых частотах наблюдаются глубокие провалы коэффициента прохождения.

Таким образом, в диапазонах частот 800 МГц – 3 ГГц и 13 ГГц – 17 ГГц диэлектрическая проницаемость стекла близка к диэлектрической проницаемости воздуха, в диапазоне частот 3 ГГц – 13 ГГц диэлектрическая проницаемость стекла отличается от диэлектрической проницаемости воздуха, причем это отличие наиболее существенно в диапазоне 6,5 ГГц – 12 ГГц.

 

Прохождение радиоволн через экранирующие материалы.

Задача экранирования электромагнитных волн является актуальной как при организации электромагнитной совместимости, так и при защите радиоэлектронной аппаратуры от мощных электромагнитных импульсов. В качестве экранирующих материалов достаточно часто применяются различные металлизированные ткани, например, полиэфирная ткань МЕТАКРОН, покрытая никелем [3,4].

На рис. 5 приведены частотные зависимости коэффициента прохождения  тканей МЕТАКРОН 1П4-Н3 толщиной 3 мкм и 1П16-Н5 толщиной 5 мкм. Измерения проводились в комнате размером 4 м × 8 м × 2,5 м, размер экранирующего материала составлял 2,5 м × 4 м (экран полностью перекрывал поперечное сечение комнаты). Расстояние между антеннами составляло 1 м (рис. 5а) и 6 м (рис. 5б).

Анализ рис. 5 показывает, что при прохождении радиоволн через более тонкую ткань 1П4-Н3 преобладает сквозная волна, ослабление составляет в среднем -30 дБ почти во всем исследуемом диапазоне частот. Однако на частотах менее 3 ГГц уровень дифракционных волн становится соизмерим с уровнем сквозной волны, при этом появляются интерференционные осцилляции коэффициента прохождения, достигающие 20 дБ. При использовании в качестве экрана ткани 1П16-Н5 во всем диапазоне частот преобладают дифракционные и переотраженные в комнате волны, при этом осцилляции коэффициента прохождения достигают 30 дБ.

 

а)

б)

Рис. 5. Частотные зависимости коэффициента прохождения радиоволн через металлизированные ткани

 

Увеличение расстояния между антеннами приводит к повышению уровней дифракционных компонент (рис. 5б), особенно это заметно для ткани 1П16-Н5 (коэффициент прохождения увеличивается в среднем на 20 дБ). При этом на частотах менее 3 ГГц различия между коэффициентами прохождения тканей 1П4-Н3 и 1П16-Н5 практически отсутствуют (рис. 5б) вследствие доминирования дифракционных компонент.

Необходимо отметить, что полученные значения коэффициентов прохождения существенно отличаются от результатов лабораторных испытаний [3], поскольку учитывают в точке приема не только сквозную, но и дифракционную компоненту радиоволн, которая во многих практически важных случаях может вносить существенный вклад в формируемое поле.

Для решения задач электромагнитного экранирования на практике могут применяться радиоотражающие краски. На рис. 6 приведены измеренные частотные зависимости коэффициентов прохождения радиоволн  через лист фанеры размером 1 м × 1 м, покрытый графитовой краской.

 

Рис. 6. Частотные зависимости коэффициента прохождения радиоволн через лист фанеры, покрытый графитовой краской, и металлический лист

 

Расстояние между антеннами составляло 1 м. Для сравнения на рисунке также представлена частотная зависимость коэффициента прохождения через сплошной металлический лист аналогичного размера.

Ослабление, вносимое экраном с графитовым покрытием, составляет в среднем -20 дБ практически во всем диапазоне частот. При этом доминирует сквозная волна. Как известно, при прохождении радиоволн через металлический лист преобладают дифракционные компоненты (сквозная компонента практически отсутствует). Из сравнения двух зависимостей видно, что дифракционная компонента при прохождении через лист фанеры, покрытый графитовой краской, соизмерима со сквозной компонентой на частотах менее 4 ГГц, а на частотах порядка 1 ГГц начинает доминировать.

Необходимо отметить, что на практике с помощью экранирующих материалов закрываются оконные проемы, поэтому представляет интерес оценка коэффициента прохождения радиоволн при размещении экрана перед окном. На рис. 7 приведена схема измерения коэффициента прохождения, моделирующая ситуацию экранирования помещения с оконным проемом. При этом имитируется прохождение радиоволн с улицы внутрь здания через окно.

 

Рис. 7 Схема измерения коэффициента прохождения через экранирующий материал в составе препятствия «стеклопакет + экран»

 

Производились измерения мощности сигнала  и  при отсутствии и наличии экранирующего материала соответственно. Расчет коэффициента прохождения экранирующего материала в составе препятствия «стеклопакет + экранирующий материал» производился по формуле

Частотная зависимость коэффициента прохождения  листа фанеры, покрытого графитовой краской, относительно стеклопакета приведена на рис. 8, при расстоянии между экраном и стеклопакетом  = 14 см и  = 30 см. Расстояние между антеннами составляло 3 м.

 

Рис. 8. Частотные зависимости коэффициента прохождения через экран с графитовым покрытием, расположенный перед окном

 

Анализ рис. 8 показывает, что коэффициент прохождения носит осциллирующий характер, однако в диапазоне частот 800 МГц – 3 ГГц осцилляции обусловлены интерференцией дифракционных компонент поля, а в диапазоне 3 ГГц – 14 ГГц интерференцией сквозных волн многократно переотраженных между стеклопакетом и экранирующим материалом. Такой вывод обосновывается сравнением зависимостей при различных удалениях экрана от стеклопакета. И если в диапазоне 3-14 ГГц при уменьшении расстояния  с 30 до 14 см частота осцилляций уменьшается в 2 раза (что обусловлено уменьшением разности хода между переотраженными волнами в резонаторе «стеклопакет – экран»), то в диапазоне частот 800 МГц – 3 ГГц зависимости практически не отличаются.

Из сравнения зависимостей, представленных на рис. 7 и 8, можно сделать следующий вывод: ослабление, вносимое экраном существенно зависит от условий распространения радиоволн, при этом за счет многократных переотражений между стеклопакетом и экраном может значительно отличаться (на 10 дБ и более) от ослабления, вносимого одним экраном, размещенным в свободном пространстве.

В качестве экранирующего материала кроме специально изготавливаемых металлизированных тканей и радиоотражающих покрытий может применяться обычная солнцезащитная пленка. Очевидно, что наличие металлизации делает солнцезащитную пленку радиоотражающей, поэтому представляет интерес измерение коэффициента прохождения радиоволн через пленку в исследуемом диапазоне частот.

На рис. 9 представлены частотные зависимости коэффициента прохождения радиоволн через солнцезащитную пленку средней плотности (один и два слоя) размером 0,5 м × 1 м. Расстояние между антеннами составляло 1 м.

 

Рис. 9. Частотные зависимости коэффициента прохождения через солнцезащитную пленку

 

Из анализа рис. 9 видно, что коэффициент прохождения через один слой пленки в среднем составляет -40 дБ. Необходимо отметить, что экранирующие свойства обычной солнцезащитной пленки в среднем на 10 дБ превышают экранирующие свойства ткани МЕТАКРОН 1П4-Н3 (рис. 5). Таким образом, солнцезащитная пленка вполне может использоваться в качестве экранирующего материала. При этом пленка может наклеиваться на оконное стекло и применяться в качестве шторы на некотором удалении от окна.

На рис. 10 представлены частотные зависимости коэффициента прохождения  одного слоя солнцезащитной пленки, расположенной перед окном на расстоянии 40 см. Расстояние между антеннами составляло 3 м.

 

Рис. 10. Частотная зависимость коэффициента прохождения радиоволн через солнцезащитную пленку, расположенную перед окном

 

Анализ зависимостей, представленных на рис. 10 показывает, что частотная зависимость коэффициента прохождения носит весьма изрезанный характер. На частотах 3 ГГц – 14 ГГц интерференционные осцилляции обусловлены резонансными переотражениями радиоволн между стеклопакетом и пленкой, при этом полученная зависимость качественно отличается от аналогичной зависимости коэффициента прохождения, представленной на рис. 8 (вместо периодических осцилляций наблюдается хаотические изменения коэффициента прохождения). Это объясняется неровной (волнистой) поверхностью пленки, используемой в экспериментах, в результате коэффициент отражения от пленки существенно зависел от частоты.

 

Прохождение радиоволн через стену.

Необходимо отметить, что при прохождении радиоволн внутрь здания ослабление вносимое стеной может быть существенно меньше ослабления экранированного оконного проема.

В работе [5] приводятся результаты экспериментальных исследований ослабления радиоволн сплошными стенами различной толщины. Однако в настоящее время наружные стены зданий часто имеют слоистую структуру, например, «1-й слой кирпича – утеплитель – 2-й слой кирпича».

На рис. 11 представлены результаты измерения коэффициента прохождения  через стену, состоящую из двух слоев кирпичной кладки толщиной 12 см и 9 см и воздушного пространства между ними 15 см (сплошная линия на рисунке). Необходимо отметить, что при проведении экспериментов использовалась модельная сухая стена, выполненная в виде внутренней перегородки здания. Для сравнения на рис. 11 также приведены усредненные значения коэффициента прохождения через сплошную внутреннюю кирпичную стену, полученные в работе [5] и пересчитанные для толщины кирпичной кладки равной 21 см (штриховая линия).

 

Рис. 11. Коэффициент прохождение радиоволн через стену

 

Анализ рис. 11 показывает, что частотная зависимость коэффициента прохождения имеет осциллирующий характер, который обусловлен многочисленными преотражениями между двумя слоями кирпичной кладки. При этом на частотах выше 10 ГГц средний уровень коэффициента прохождения почти не меняется и даже несколько возрастает. При одинаковой суммарной толщине кирпичной кладки двухслойная стена вносит большее ослабление по сравнению с однослойной, что объясняется дополнительными потерями на отражение от границ раздела сред «воздух – кирпич» и «кирпич – воздух» при прохождении волны через второй слой стены.

 

Выводы.

Проведены экспериментальные исследования ослабления радиоволн при их прохождении через стену с оконным проемом. Экспериментально показано, что на частотах 3-12 ГГц ослабление радиоволн стеклопакетом весьма существенно вследствие значительного отражения радиоволн слоем стекла. При использовании экранирующих материалов недостаточно данных о коэффициентах прохождения сквозной волны, полученных в лабораторных условиях. На реальных трассах распространения радиоволн наряду со сквозной необходимо учитывать дифракционную компоненту, которая может вносить значительный вклад в результирующее поле. При размещении экранирующих материалов перед окном необходимо учитывать многочисленные отражения радиоволн в резонаторе «стеклопакет – экранирующий материал», которые приводят к существенным изменениям экранирующих свойств материалов.

 

Литература

1. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. Recommendation ITU-R P.1411-6, Geneva (02/2012).
 

2. Propagation data required for the design of broadcasting-satellite systems. Recommendation ITU-R P.679-3, (02/2001).
 

3. Металлизированная электропроводящая ткань Метакрон для защиты от излучений [Электронный ресурс]: ООО НПП «Техностиль». URL: http://www.metakron.ru
 

4. Радиоэкранирующие материалы [Электронный ресурс]: ООО НПП «Радиострим». URL: http://www.radiostrim.ru/ 100-screen.html.
 

5. А. И. Рыжов , В. А. Лазарев , Т. И. Мохсени , Д. В. Никеров , Ю. В. Андреев , А. С. Дмитриев , Н. П. Чубинский. Ослабление сверхширокополосных хаотических  сигналов диапазона 3–5 ГГц при прохождении через  стены зданий. // Журнал радиоэлектроники: электронный журнал. 2012. N5. URL: http://jre.cplire.ru/jre/may12/1/text.pdf.