УДК 538.9

ИССЛЕДОВАНИЕ Ni B ZnO МЕТОДОМ ОДНООСНОГО СЖАТИЯ

Ю. С. Кутьин¹, Э. В. Лавров²

¹Казанский федеральный университет ²Институт радиотехники и электроники им. В.А. Котельникова РАН

Получена 17 декабря 2012

Аннотация. Исследуется влияние одноосного сжатия на электронные переходы ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$ иона Ni²⁺ (d^{8}) в ZnO. Показано, что расщепление и поляризационные свойства линий ИК поглощения согласуются с тригональной симметрией и спин-орбитальным расщеплением, установленными в предшествующих исследованиях.

Ключевые слова: оксид цинка, никель, ИК поглощение, электронные переходы.

Abstract: The influence of the uniaxial compression on the electron transitions ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$ of Ni²⁺ (d^{8}) ion into ZnO is investigated. It has been shown that splitting and polarized properties of the IR absorption lines are adjusted with the trigonal symmetry and spin-orbital splitting revealed in the previous investigations. **Key words:** zinc oxide, nickel, IR absorption, electron transitions.

1. Введение

ZnO – прямозонный полупроводник с шириной запрещенной зоны 3.3 эВ при комнатной температуре – привлекает большое внимание в последние годы благодаря большому количеству потенциальных приложений, таких как материал для создания синих и ультрафиолетовых светоизлучающих диодов, устойчивый к радиации материал для космических приложений, прозрачный проводящий оксид, и т.д. [1]. Из-за теоретически предсказанной высокой температуры Кюри существует также большой интерес к созданию на основе допированного переходными металлами (Co, Mn, Fe, Ni) ZnO разбавленных магнитных полупроводников [2-6].

Никель – распространенная примесь в ZnO, вносимая в материал во время роста кристалла. Никель приводит к появлению ряда линий в спектрах фотолюминесценции (ФЛ) и ИК поглощения оксида цинка. В частности, переходы ${}^{4}T_{2}(F) \rightarrow {}^{4}A_{2}(F)$ иона Ni³⁺ (d⁷) возникают в спектрах ФЛ на частотах 6090.5 и 6096.2 см⁻¹ [7]. Переходы ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$ иона Ni²⁺ (d^{8}) наблюдаются в ИК поглощении на 4216, 4240, и 4247 см⁻¹ [7,8]. Линия на 8340 см⁻¹ ${}^{3}T_{1}(F) \rightarrow {}^{3}A_{2}(F)$ приписывается переходу [8]. Недавно было продемонстрировано, что данный спектр имеет структуру, соответствующую ⁵⁸Ni, ⁶⁰Ni ⁶²Ni. И изотопам никеля что основным подтвердило микроскопическую природу данного дефекта [9].

Пьезоспектроскопия позволяет определить симметрию дефекта и получить величины скоростей сдвига линий под действием давления, в том числе скорость гидростатического сдвига [10-12]. Методом пьезоспектроскопии недавно исследовалось множество дефектов в ZnO, связанных с водородом и медью [13-15].

В данной работе мы приводим результаты исследования Ni методом одноосного сжатия, выполненного на переходах ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$ на 4216, 4240, и 4247 см⁻¹.

2. Описание эксперимента

Образцы ZnO, использованные в экспериментах по одноосному сжатию – субстраты *n*-типа, выращенные гидротермальным способом и поставляемые компанией CrysTec GmbH. Размеры номинально нелегированных образцов, содержащих примесь Ni, составляли порядка $6 \times 2 \times 1$ мм³. Одноосное сжатие производилось вдоль наиболее длинной стороны образца, которая вырезалась вдоль оси *c*, [1210] и [1010]. Намеренное легирование никелем производилось на образцах ZnO, выращенных из газовой фазы в Институте прикладной физики Университета Эрлангена (Германия) [16].

Измерения выполнялись в диапазоне давлений до 0.3 ГПа при 8-10 К на самодельном прессе, установленном в гелиевом криостате с окнами из ZnSe. Давление прикладывалось к образцам пневматическим цилиндром и передавалось толкающим стержнем. Поляризованные спектры были получены с помощью проволочного поляризатора на субстрате из KRS-5.

Спектры ИК поглощения были записаны на фурье-спектрометре Вотет DA3.01. Использовался глобар в качестве источника света, светоделитель из CaF₂ и детектор на основе InSb, охлаждаемый жидким азотом. Спектральное разрешение составляло 0.25 см⁻¹.

Фотолюминесценция ZnO 4.2 K измерялась при на образцах, погруженных гелий В криостате Oxford. Возбуждение В жидкий волны 325 нм лазером HeCd с мощностью осуществлялось на длине возбуждения около 2 мВт.

3. Допирование оксида цинка никелем

В литературе встречается множество линий ИК поглощения и фотолюминесценции, приписываемых различным переходным металлам, внедренным в ZnO [7,8,17-19]. Недавно Vlasenko *u др*. продемонстрировали, что часто наблюдаемые в ZnO узкие линии ФЛ на 6885 см⁻¹, которые традиционно приписывались меди, в действительности принадлежат ванадию, входящему в ZnO в качестве непреднамеренно вносимой примеси [20].

Для подтверждения химической природы дефекта, спектр которого изучался в данной работе, выращенные из газовой фазы образцы ZnO намеренно легировались никелем. Образцы помещались в кварцевую ампулу с кусочком никелевой проволоки размером примерно 2 мм³ (чистота материала 99.99%). Ампула затем заполнялось кислородом (0.5 бара при комнатной температуре), запаивалась и помещалась на 40 часов в печку при температуре 950 °C.

Рис. 1. Фрагменты спектров ФЛ (слева) и ИК поглощения (справа) образца ZnO, выращенного из газовой фазы. Спектры записаны при температуре около 10 К до и после диффузии Ni из газовой фазы при 950 °C в течение 40 часов. Спектр ФЛ соответствует переходу ${}^{4}T_{2}(F) \rightarrow {}^{4}A_{2}(F)$ иона Ni³⁺, а линии ИК поглощения – переходу ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$ иона Ni²⁺ (для удобства спектры сдвинуты по вертикали).

На рис. 1 показаны результаты экспериментов по диффузии Ni. Нижние спектры были записаны до легирования. В данных образцах отсутствуют линии ИК поглощения и ФЛ, приписываемые Ni²⁺ и Ni³⁺. Два верхних спектра были сняты непосредственно после обработки образцов. На спектре ФЛ появилась линия на 1640 нм, приписываемая иону Ni³⁺, а также на спектре ИК поглощения появились три линии на частоте около 4240 см⁻¹, принадлежащие иону Ni²⁺ [7].

4. Диаграмма энергетических уровней

Замещение цинка никелем не приводит к существенным искажениям решетки ZnO, поскольку ионы Ni²⁺ и Zn²⁺ имеет близкие по значению ионные радиусы [21]. Все электронные состояния никеля, замещающего цинк, должны преобразовываться по неприводимым представлениям A_1 , A_2 или E точечной группы $C_{3\nu}$. На диаграмме энергетических уровней Ni²⁺, приведенной на рис. 2, в порядке уменьшения величины рассматриваются возмущения, действующие на состояние ³*F* свободного иона. Для ионов переходных металлов

кристаллическое поле обычно велико по сравнению со спин-орбитальным взаимодействием [22]. Таким образом, на диаграмме слева направо учтено влияние тетраэдрического кристаллического поля, спин-орбитального взаимодействия и тригонального поля решётки типа вюрцита на основное состояние иона d^8 .

Рис. 2. Диаграмма энергетических уровней иона Ni²⁺ в ZnO. Красная и черные стрелки обозначают электрические дипольные переходы, разрешенные для поляризаций $E \parallel c$ и $E \perp c$, соответственно.

Каufmann $u \, dp$. продемонстрировали, однако, что статическая теория кристаллического поля не способна адекватно описать наблюдаемые спектры Ni²⁺ в ZnO [23]. Было показано, что удовлетворительно интерпретировать линии ИК поглощения позволяет учет динамического эффекта Яна-Теллера. Сильная связь между электронными орбитальными состояниями Ni и колебательной модой *E* оксида цинка приводит к уменьшению всех недиагональных матричных элементов электронных операторов. Диаграмма уровней с учетом эффекта Яна-Теллера показана в правой части рис. 2.

Поскольку измерения по ИК поглощению проводились при температуре около 9 К, только основное состояние A₁ является заселенным (см. рис. 2), и

следует рассматривать переходы только с этого состояния. Электрический дипольный переход между двумя состояниями разрешен, если прямые произведения неприводимых представлений этих двух уровней с неприводимыми представлениями электрического дипольного момента dсодержат неприводимое представление A_1 . В точечной группе $C_{3\nu}$ вектор dпреобразуется по сумме A_1 и E. Отсюда следует, что переходы $A_1 \rightarrow A_2$ запрещены в электрическом дипольном приближении, в то время как переходы на уровни A_1 и E разрешены, соответственно, в параллельной ($E \parallel c$) и перпендикулярной ($E \perp c$) поляризации.

Рис. 3. Поляризованные спектры ИК поглощения иона Ni²⁺ в ZnO, соответствующие переходам ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$, записанные при 10 К. Для удобства спектры сдвинуты по вертикали.

На рис. 3 приведены поляризованные спектры ИК поглощения образца ZnO, выращенного гидротермальным способом и содержащего Ni в качестве неконтролируемой примеси. Видно, что первые три линии (L₁, L₂ и L₃) преимущественно поляризованы, соответственно, перпендикулярно,

параллельно, и перпендикулярно оси *с*, что согласуется с диаграммой энергетических уровней Ni²⁺ [7, 23].

Отметим, что интенсивность линии L₁ в параллельном спектре, вопреки диаграмме никеля, не является исчезающее малой. Для второй и третьей линии поляризационные правила отбора также выполняются нестрого. Похожие эффекты наблюдались также в спектрах поглощения Co²⁺ (d^7) [24] и Cu²⁺ (d^9) [17] в ZnO. Причины такого поведения до конца не ясны. Мы полагаем, что оно объясняется искажениями решетки, приводящими к смешиванию состояний ³*F* и ³*P* иона никеля даже в отсутствие внешнего приложенного давления.

Линии L_4 и L_5 всегда входят в спектры оксида цинка, содержащего Ni, примерно с одинаковыми относительными интенсивностями по сравнению с первыми тремя линиями. Следовательно, эти линии также должны быть приписаны никелю. Отметим, что переход L_5 наблюдался прежде, но не был приписан переходам Ni [23]. Линия L_4 преимущественно поляризована перпендикулярно, линия L_5 – параллельно оси *с*. Однако степень поляризации в обоих случаях довольно низкая, что не позволяет однозначно интерпретировать данные переходы.

Поскольку переходы L_4 и L_5 значительно отстоят по энергии от первых трех линий, мы пренебрегаем взаимодействием между двумя этими группами и рассматриваем только переходы L_1 , L_2 и L_3 .

5. Одноосное сжатие

На рис. 4 показано влияние давления (*F*), приложенного вдоль *c*, $[1\overline{2}10]$ и $[10\overline{1}0]$, на переходы L₁, L₂ и L₃, которые принадлежат замещающему цинк Ni. Как и ожидалось, в случае *F* || *c* двойное вырождение состояний *E*, которым отвечают переходы L₁ и L₃, не снимается. Все линии сдвигаются линейно в сторону больших энергий с близкими скоростями, составляющими 33, 37 и 39 см⁻¹/ГПа для L₁, L₂ и L₃, соответственно.

Рис. 4. Поляризованные спектры ИК поглощения и расщепление линий Ni²⁺ под действием одноосного сжатия: *F* || *c* (слева), *F* ||[1210] (посередине) и *F* ||[1010] (справа). Сплошными линиями показано расщепление, рассчитанное из выражений (2), (4) и (8). Значения подгоночных параметров приведены в тексте.

В случае же, когда давление направлено перпендикулярно оси c, линия L₁ смещается нелинейно, и ее суммарная интенсивность растет с давлением. Кроме того, меняются поляризационные свойства линии L₁, так, что при давлении $\sigma = 0.3$ ГПа она поляризована преимущественно параллельно оси c.

Поляризационные свойства линий L_2 и L_3 также меняются с давлением: запрещенные при нулевом давлении поляризации становятся существенными при 0.3 ГПа. Кроме того, в соответствии с ожидаемой картиной расщепления состояний *E* в кристаллах с решеткой типа вюрцита, линия L_3 должна вести себя одинаково при наложении давлении как вдоль [1210], так и вдоль [1010] [25]. Однако результаты измерений, представленные на рис. 4, не согласуются с данным выводом.

Наблюдаемые эффекты можно объяснить, если предположить, что уровни E, A_1 и E иона Ni²⁺, которым соответствуют линии поглощения L₁, L₂ и L₃, не являются независимыми. В данном случае энергетические уровни смешиваются под действием давления, что приводит к перераспределению интенсивности и поляризационных свойств между всеми тремя переходами. Необходимо

составить Гамильтониан с соответствующими свойствами симметрии, учитывающий взаимодействие между уровнями за счет прикладываемого давления.

Для этого мы выбираем следующие базисные функции: $\Psi_{E_1}^{L_1}, \Psi_{E_2}^{L_2}, \Psi_{A_1}^{L_2}, \Psi_{E_1}^{L_3}$, и $\Psi_{E_2}^{L_3}$. Верхний индекс указывает линию в спектре ИК поглощения, и нижний индекс обозначает неприводимое представление соответствующего уровня энергии.

В линейном приближении Гамильтониан системы можно записать как

$$H = H_0 + H(\sigma), \tag{1}$$

где *H*₀ – это Гамильтониан нулевого поля, не зависящий от внешнего давления:

где $\Delta = 24 \text{ см}^{-1}$ – разница в энергии между уровнями A_1 и E, соответствующими линиям L_2 и L_1 , а $\delta = 7 \text{ см}^{-1}$ – разница между E и A_1 , соответствующими линиям L_3 и L_2 , соответственно (см. рис. 2).

Часть Гамильтониана (1), зависящая от давления, может быть записана как

$$H(\sigma) = \begin{pmatrix} H_{L_3}(\sigma) & V_{32}(\sigma) & V_{31}(\sigma) \\ V_{23}(\sigma) & H_{L_2}(\sigma) & V_{21}(\sigma) \\ V_{13}(\sigma) & V_{12}(\sigma) & H_{L_1}(\sigma) \end{pmatrix}.$$
 (3)

Матрицы $H_{L_3}(\sigma)$, $H_{L_2}(\sigma)$ и $H_{L_1}(\sigma)$ имеют размерности 2×2, 1×1 и 2×2, соответственно. Они описывают воздействие давления на линии L₃, L₂, L₁ в отсутствие взаимодействия между энергетическими уровнями. Матрицы V_{ij} описывают вызванное давлением взаимодействие. Их размерность: 2×1 , 2×2 и 1×2 для $V_{32}(\sigma)$, $V_{31}(\sigma)$ и $V_{21}(\sigma)$, соответственно.

Чтобы получить выражение для Гамильтониана давления в явном виде, необходимо указать систему координат. Выбираем $x \parallel [1\overline{2}10], y \parallel [10\overline{1}0]$ и $z \parallel c$, при этом единственными ненулевыми элементами тензора напряжений σ_{ij} будут σ_{xx}, σ_{yy} и σ_{zz} для $F \parallel [1\overline{2}10], [10\overline{1}0]$ и c, соответственно.

Тогда матрицы *Н*(*о*) могут быть записаны как [25]

$$H_{L_3}(\sigma) = \begin{pmatrix} A_{\parallel}\sigma_{zz} + A\sigma_{xx} + B\sigma_{yy} & 0\\ 0 & A_{\parallel}\sigma_{zz} + B\sigma_{xx} + A\sigma_{yy} \end{pmatrix},$$
(4a)

$$H_{L_2}(\sigma) = C_{\parallel}\sigma_{zz} + C(\sigma_{xx} + \sigma_{yy}), \tag{4b}$$

$$H_{L_1}(\sigma) = \begin{pmatrix} D_{\parallel}\sigma_{zz} + D\sigma_{xx} + J\sigma_{yy} & 0\\ 0 & D_{\parallel}\sigma_{zz} + J\sigma_{xx} + D\sigma_{yy} \end{pmatrix}.$$
 (4c)

Как следует из рис. 4, смещение всех трех линий при $F \parallel c$ линейно с давлением, и подгонка параметров в данном случае тривиальна: $A_{\parallel} = 33$, $C_{\parallel} = 37$, и $D_{\parallel} = 39$ см⁻¹/ГПа.

Для подгонки параметров при $F \perp c$ необходимо составить недиагональные матрицы $V_{ij}(\sigma)$. Начнем с разложения возмущения $V(\sigma)$ по неприводимым представлениям точечной группы $C_{3\nu}$:

$$V(\sigma) = V_{zz}\sigma_{zz} + (V_{xx} + V_{yy})(\sigma_{xx} + \sigma_{yy})/2 + (V_{xx} - V_{yy})(\sigma_{xx} - \sigma_{yy})/2 +$$

+2 $V_{xy}\sigma_{xy} + 2V_{xz}\sigma_{xz} + 2V_{yz}\sigma_{yz} = V_{A_1}^1\sigma_{zz} + V_{A_1}^2(\sigma_{xx} + \sigma_{yy}) + V_{E_1}^1(\sigma_{xx} - \sigma_{yy}) +$
+2 $V_{E_2}^1\sigma_{xy} + 2V_{E_1}^2\sigma_{xz} + 2V_{E_2}^2\sigma_{yz}.$ (5)

Матричные элементы матриц $V_{32}(\sigma)$ и $V_{21}(\sigma)$ вычисляются на функциях, преобразующихся в соответствии с неприводимыми представлениями E и A_1 . Учитывая также, что $\sigma_{ij} = 0$ при $i \neq j$, мы получаем:

$$V_{32}(\sigma) = E \begin{pmatrix} \sigma_{xx} - \sigma_{yy} \\ 0 \end{pmatrix}, \tag{6a}$$

$$V_{21}(\sigma) = H \begin{pmatrix} \sigma_{xx} - \sigma_{yy} & 0 \end{pmatrix}.$$
 (6b)

Матрица $V_{31}(\sigma)$ вычисляется на двух наборах функций, каждый из которых преобразуется по неприводимому представлению *E* и, следовательно, имеет ту же структуру, что и $H_{L_3}(\sigma)$ и $H_{L_1}(\sigma)$, то есть:

$$V_{31}(\boldsymbol{\sigma}) = \begin{pmatrix} F\boldsymbol{\sigma}_{xx} + G\boldsymbol{\sigma}_{yy} & 0\\ 0 & G\boldsymbol{\sigma}_{xx} + F\boldsymbol{\sigma}_{yy} \end{pmatrix}.$$
 (7)

Собрав вместе все матрицы, мы получаем, что в случае $F \perp c$, то есть при $F \parallel [1\overline{2}10]$ и $[10\overline{1}0]$, Гамильтониан давления записывается как

$$H(\sigma) = \begin{cases} A\sigma_{xx} + B\sigma_{yy} & 0 & E(\sigma_{xx} - \sigma_{yy}) & F\sigma_{xx} + G\sigma_{yy} & 0 \\ 0 & B\sigma_{xx} + A\sigma_{yy} & 0 & 0 & G\sigma_{xx} + F\sigma_{yy} \\ E(\sigma_{xx} - \sigma_{yy}) & 0 & C(\sigma_{xx} + \sigma_{yy}) & H(\sigma_{xx} - \sigma_{yy}) & 0 \\ F\sigma_{xx} + G\sigma_{yy} & 0 & H(\sigma_{xx} - \sigma_{yy}) & D\sigma_{xx} + J\sigma_{yy} & 0 \\ 0 & G\sigma_{xx} + F\sigma_{yy} & 0 & 0 & J\sigma_{xx} + D\sigma_{yy} \\ \end{cases}$$
(8)

Сплошные линии на рис. 4 показывают расщепление линий L₁, L₂ и L₃, полученное из выражений (2), (4) и (8). Найденные оптимальные значения подгоночных параметров для случая $F \perp c$: $A = -7 \pm 5$, $B = -34 \pm 3$, $C = 16 \pm 3$, $D = 6 \pm 4$, $|E| = 27 \pm 2$, $|F| = 41 \pm 5$, $|G| = 22 \pm 5$, $|H| = 11 \pm 3$, $|J| = 2 \pm 3$ см⁻¹/ГПа. Как видно из рис. 4, наша модель удовлетворительно описывает экспериментальные результаты.

6. Обсуждение

Из диаграммы энергетических уровней никеля в ZnO, которую предложили Kaufmann $u \, dp$. (см. рис. 2) следует, что существует также уровень A_2 , расположенный близко к E, переходу на который соответствует линия L₁. Переход $A_1 \rightarrow A_2$ запрещен в электрическом дипольном приближении и не может наблюдаться в ИК поглощении.

Исследование комплекса Cu-H в ZnO выявило ряд невидимых переходов дефекта, которые появляются, когда к образцу приложено одноосное сжатие [14]. Данный эффект был объяснен смешиванием энергетических уровней под

действием давления, которое приводит к переносу интенсивности к комбинационным модам и делает возможным их наблюдение в спектрах. Подобные результаты ожидались и в случае Ni. Однако в наших измерениях дополнительные индуцированные давлением линии не наблюдались. Поэтому уровень A_2 был исключен из рассмотрения, что позволило сократить размерность Гамильтониана (8) с 6×6 до 5×5 и, соответственно, уменьшить число подгоночных параметров.

Еще одно усложнение предложенной модели заключается во влиянии низколежащих уровней никеля (см. рис. 2). В отсутствие давления необходимо учитывать только переходы с основного состояния A_1 , т.к. измерения проводились при температуре 9 К. Однако возможна ситуация, когда состояния расщепляются и/или сдвигаются под действием давления, и часть компонент подходят близко к основному уровню и также становятся заселенными при 9 К (см., к примеру, [26]). Это, в свою очередь, может усложнить картину расщепления, следующую из Гамильтониана (8).

Неидеальное соответствие между рассчитанной и реальной картинами расщепления (см. рис. 4) может быть объяснено, по крайней мере частично, «недостающим» уровнем A_2 и индуцированным давлением сдвигом низколежащих энергетических уровней Ni.

7. Выводы

Исследовалось влияние одноосного сжатия на электронные переходы ${}^{3}T_{1}(F) \rightarrow {}^{3}T_{2}(F)$ иона Ni²⁺ (d^{8}) в ZnO на 4216, 4240 и 4247 см⁻¹. Был составлен Гамильтониан давления, который удовлетворительно описывает поведение исследуемых переходов при одноосном сжатии. Показано, что расщепление и поляризационные свойства линий ИК поглощения согласуются с симметрией дефекта, полученной в предшествующих работах.

Работа выполнена при поддержке Министерства образования и науки РФ (соглашения № 8514 и № 8862).

Литература

- Klingshirn C. ZnO: From basics towards applications //Phys. Status Solidi B. 2007. № 244. P. 3027.
- Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors //Science. 2000. № 287. P. 1019.
- Risbud A.S., Spaldin N.A., Chen Z.Q., Stemmer S., Seshadri R. Magnetism in polycrystalline cobalt-substituted zinc oxide //Phys. Rev. B. 2003. № 68. P. 205202.
- Norton D.P., Overberg M.E., Pearton S.J., Pruessner K., Budai J.D., Boatner L.A., Chisholm M. F., Lee J.S., Khim Z.G., Park Y. D. Ferromagnetism in cobalt-implanted ZnO //Appl. Phys. Lett. 2003. № 83. P. 5488.
- Jedrecy N., von Bardeleben H.J., Zheng Y., Cantin J.-L. Electron paramagnetic resonance study of Zn_{1-x}Co_xO: A predicted high-temperature ferromagnetic semiconductor //Phys. Rev. B. 2004. № 69, 041308.
- 6. Wardle M.G., Goss J.P., Briddon P. R. Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO //Phys. Rev. B. 2005. № 72. P. 155108.
- Schulz H.-J., Thiede M. Optical spectroscopy of 3d7 and 3d8 impurity configurations in a wide-gap semiconductor (ZnO:Co,Ni,Cu) //Phys. Rev. B. 1987. № 35. P. 18.
- Anderson R. S. Lattice-Vibration Effects in the Spectra of ZnO:Ni and ZnO:Co //Phys. Rev. 1967. № 164. P. 398.
- 9. Lavrov E.V., Börrnert F., Weber J. Dominant hydrogen-oxygen complex in hydrothermally grown ZnO //Phys. Rev. B. 2005. № 71. P. 035205.
- 10.Limpijumnong S., Zhang S. B. Resolving hydrogen binding sites by pressure— A first-principles prediction for ZnO //Appl. Phys. Lett. 2005. № 86. P. 151910.
- 11.Jokela S.J., McCluskey M. D. Structure and stability of O-H donors in ZnO from high-pressure and infrared spectroscopy //Phys. Rev. B. 2005. № 72. P. 113201.

- 12.Wardle M.G., Goss J.P., Briddon P.R. Relationship between binding site and pressure dependence for defect-hydrogen complexes in ZnO //Appl. Phys. Lett. 2006. № 88. P 261906.
- 13.Lavrov E.V., J. Weber J. Effect of uniaxial stress on vibrational modes of hydrogen in ZnO //Phys. Rev. B. 2006. № 73. P 035208.
- 14.Lavrov E.V., Weber J. Uniaxial stress study of the Cu–H complex in ZnO //Phys. Status Solidi B. 2006. № 243. P. 2657.
- 15.Lavrov E.V., Weber J., Börrnert F. Copper dihydrogen complex in ZnO //Phys. Rev. B. 2008. № 77. P. 155209.
- 16.Helbig R. Über die züchtung von grösseren reinen und dotierten ZnO-kristallen aus der gasphase //J. Cryst. Growth. 1972. № 15. P. 25
- 17.Weakliem H.A. Optical Spectra of Ni²⁺, Co²⁺, and Cu²⁺ in Tetrahedral Sites in Crystals //J. Chem. Phys. 1962. № 36. P. 2117.
- 18.Dietz R.E., Kamimura H., Sturge M.D., Yariv A. Electronic Structure of Copper Impurities in ZnO //Phys. Rev. 1963. № 132, P. 1559.
- 19.Dingle R. Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide //Phys. Rev. Lett. 1969. № 23. P. 579.
- 20.Vlasenko L.S., Watkins G.D., Helbig R. Origin of the 6885-cm⁻¹ luminescence lines in ZnO: Vanadium versus copper //Phys. Rev. B. 2005. № 71. P. 115205.
- 21.Shannon R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides //Acta Crystallogr. 1976.
 № A 32. P. 751.
- 22.Dresselhaus M.S., Dresselhaus G., Jorio A. Group Theory: Application to the Physics of Condensed Matter. Berlin, Heidelberg. Springer-Verlag. 2008.
- 23.Kaufmann U., Koidl P., Schirmer O.F. Near infrared absorption of Ni2+ in ZnO and ZnS: dynamic Jahn-Teller effect in the 3T2 state //J. Phys. C: Solid State Phys. 1973. № 6. P. 310.
- 24.Koidl P. Optical absorption of Co²⁺ in ZnO //Phys. Rev. B. 1977. № 15. P. 2493.

- 25.McGlynn E., Henry M.O. Splitting of point defect energy levels in wurtzite crystals under uniaxial stresses applied along arbitrary directions //Phys. Rev. B. 2007. № 76. P. 184109.
- 26.Brumage W.H., Lin C.C. Magnetic Susceptibilities of Transition Elements in Host Crystals. II. Ni²⁺ in ZnO and CdS //Phys. Rev. 1964. № 134. P. A950.