УДК 621.376.56

ИССЛЕДОВАНИЕ ПОМЕХОУСТОЙЧИВОСТИ РЛС С КВАЗИНЕПРЕРЫВНЫМ РЕЖИМОМ ИЗЛУЧЕНИЯ И ПРИЕМА СИГНАЛОВ К ВОЗДЕЙСТВИЮ ПАССИВНЫХ ПОМЕХ

И. Н. Жукова

Новгородский государственный университет им. Ярослава Мудрого

Статья получена 3 декабря 2014 г.

Аннотация. В работе производится оценка помехоустойчивости РЛС с квазинепрерывным режимом излучения и приема сигналов с псевдослучайным законом амплитудно-фазовой манипуляции. Анализируется отношение "сигнал/(шум+помеха)" в каналах обработки при действии пассивных помех, распределенных по задержке и доплеровскому сдвигу частоты.

Ключевые слова: радиолокационные системы, сложные сигналы, квазинепрерывный режим, пассивные помехи.

Abstract: In the paper radar system with quasicontinuous transmission and reception of signals are presented. Noise immunity is analyzed using wide-band signals with pseudorandom amplitude-phase keying. Signal-to-noise ratio in processing device channels is examined using passive interference, distributed along time and Doppler shift.

Key words: radar systems, wide-band signals, quasicontinuous mode, passive interference.

Введение

Помехоустойчивость РЛС к воздействию пассивных помех зависит от степени временного и частотного перекрытия сигналов, отраженных от объектов в зоне действия РЛС. Особо чувствительны к маскировке удаленных целей мощными мешающими отражениями РЛС с квазинепрерывным режимом излучения и приема сложных сигналов с псевдослучайным законом амплитудно-фазовой манипуляции (АФМ сигналов).

АФМ сигнал длительностью $T=N\Delta$, состоящий из N элементарных длительностью Δ , излучается фазоманипулированными ИМПУЛЬСОВ импульсами длительностью $\Delta_x = k_x \Delta$ и имеет среднюю скважность Q. Количество излученных импульсов длительностью Δ равно K = N/Q. Интервал следования фазоманипулированных импульсов определяется псевдослучайным законом изменения АФМ-огибающей и значительно меньше обрабатываемых сигналов. Приём диапазона задержек эхо-сигналов производится в паузах излучения и сопровождается энергетическими потерями. Часть энергии сигнала, поступающей в дальномерный корреляционный канал обработки, определяется коэффициентом приема $\Lambda_R = (Q-1)/Q$, а степень временного перекрытия отраженных импульсов определяется коэффициентом наложения $\Lambda_Q = \Lambda_R / Q$ [1].

Уровень помех, возникающих вследствие временного и частотного перекрытия отраженных АФМ сигналов, определяется величиной боковых лепестков их функции неопределенности $\chi(\tau, f)$, представленной на рис.1.

Рис. 1 Функция неопределенности АФМ сигнала

Функция неопределенности (ФН) АФМ сигнала имеет практически плоский «пьедестал» с уровнем $\chi_S = \sqrt{K\Lambda_O}$, на фоне которого выделяются главный пик с уровнем $\chi_M = K\Lambda_R$ и треугольной формы «гребень»,

локализованный по задержке и протяженный по частоте. Размер по задержке и степень возвышения «гребня» над «пьедесталом» зависят от средней скважности и длительности фазоманипулированных импульсов АФМ сигнала, $\chi_{ZTC} = \sqrt{K\Lambda_R k_x}$. Поэтому помехоустойчивость при наличии пассивных помех зависит как от базы АФМ сигнала, так и от параметров Q и k_x его огибающей.

Оценкой качества выделения полезного сигнала из аддитивной смеси с пассивными помехами и флюктуационным шумом является величина отношения "сигнал/(шум+помеха)" на выходе устройства корреляционной обработки.

Целью настоящей работы является исследование отношения "сигнал/(шум+помеха)" на выходе корреляционного обнаружителя в зависимости от параметров АФМ сигнала.

2. Модель оценки отношения "сигнал/(шум+помеха)"

Обнаружение АФМ сигнала ведется многоканальным по задержке $\tau_c = c\Delta$, $c = 1, 2, ... c_{\text{max}}$ и доплеровской частоте $f_v = v/T$, $v = 0, \pm 1, \pm 2, ... \pm v_{\text{max}}$ корреляционным устройством.

Пусть на входе устройства обработки присутствует аддитивная смесь полезного сигнала мощностью P_s , сигнала пассивных помех общей мощностью P_{ζ} , отраженного от бессчетного множества точечных отражателей земной поверхности, и шума мощностью P_{η} в полосе сигнала.

Мощность *P_s* определяется дальностью и ЭПР объекта. Будем полагать, что задержка и доплеровский сдвиг частоты полезного сигнала совпадают с параметрами настройки (*c*,*v*)-ого канала обработки.

Плотность распределения общей мощности P_{ζ} пассивных помех по задержке τ и доплеровскому сдвигу частоты f описывается функцией $\rho(\tau, f)$. При аппроксимации ДНА в виде сферы, соответствующей ее боковым лепесткам, и конуса, совпадающего по ширине и направлению с главным

лучом, рельеф функции $\rho(\tau, f)$ с наложением мощностей четырех полезных сигналов имеет, согласно [2], вид, представленный на рис. 2. Форма $\rho(\tau, f)$ соответствует движению носителя с постоянной путевой скоростью на некоторой высоте параллельно плоскости ровной, однородной земной поверхности. Следует отметить, что протяженность $\rho(\tau, f)$ по задержке определяется разностью $(au_{rh} - au_h)$, где au_h и au_{rh} - задержки сигналов, расположения носителя соответствующие высоте и дальности ДО радиогоризонта. В отсутствии флюктуаций отражений протяженность $\rho(\tau, f)$ по доплеровскому сдвигу частоты определяется величиной $(2 \cdot f_{\text{max}}), f_{\text{max}}$ максимальный доплеровский сдвиг отражений, зависящий от скорости носителя.

Рис. 2 Функция распределения мощности пассивных помех по задержке и частоте

При дискретном наблюдении с интервалом выборки Δ отношение "сигнал/(шум+помеха)" на выходе (c,v)- го канала обработки представляется, согласно [3], выражением

$$q^{2}(c,v) = \frac{P_{s}\chi_{M}^{2}}{P_{\eta}\chi_{M} + \sum_{m=0}^{(\tau_{rh} - \tau_{h})/\Delta} \int_{-f_{max}}^{f_{max}} \left|\chi(\tau_{c} - m\Delta, f_{v} - f)\right|^{2} \rho_{m}(f)df}$$
(1)

где $\rho_m(f) = \int_{m\Delta}^{(m+1)\Delta} \rho(\tau, f) d\tau$ - мощность отражений с f-ым доплеровским

сдвигом частоты и задержкой из диапазона $[m\Delta, (m+1)\Delta[, m=0,1,2,..(\tau_{rh}-\tau_h)/\Delta; |\chi(\tau_c-m\Delta, f_v-f)|^2$ - значение ФН АФМ сигнала при относительных сдвигах по задержке и доплеровской частоте, равных соответственно $(\tau_c - m\Delta)$ и $(f_v - f)$.

3. Оценка изменения отношения "сигнал/(шум+помеха)" в каналах обработки

При ограниченной по сравнению с частотно-временными параметрами сигнала протяженности функции $\rho(\tau, f)$ значение q(c, v) зависит от вида модуляции широкополосного сигнала, а, следовательно, от формы его ФН. Уровни, аппроксимирующие рельеф ФН АФМ сигналов при квазинепрерывном режиме их излучения и приема, позволяют оценить изменение q(c, v) по каналам обработки для заданной функции $\rho(\tau, f)$. Определяющее значение имеет «принадлежность» параметров полезного сигнала, на обнаружение которого настроен (c, v)-ый канал обработки, одной из характерных областей распределения помех на плоскости (τ, f) :

– области, свободной от пассивных помех, $\tau_c < \tau_h$ или $|f_c| > f_{\text{max}}$ (например, на рис.2 полезные сигналы 1 и 3 с параметрами (τ_1, f_1) и (τ_3, f_3) соответственно);

- области отражений по главному лучу ДНА (сигнал 4 с параметрами (*τ*₄, *f*₄),
 рис.2);
- области отражений по боковым лепесткам ДНА, в которой особо выделяется область отражений повышенной интенсивности (область высотных отражений), расположенная непосредственно под носителем (сигнал 2 с параметрами (*τ*₂, *f*₂), рис.2).

Если (c,v)-ый канал обработки настроен на обнаружение сигнала с задержкой, отличной от области распределения помех по времени (например, обнаружение сигнала 1, $\tau_1 < \tau_h - k_x \Delta$), то полезный сигнал маскируется пропорционально уровню боковых лепестков только «пьедестала» ФН, и отношение "сигнал/(шум+помеха)" оценивается выражением

$$q^{2}(c,v) = \frac{P_{s}\chi_{M}^{2}}{P_{\eta}\chi_{M} + P_{\xi}\chi_{S}^{2}} = \frac{P_{s}\chi_{M}}{P_{\eta}\left(1 + \frac{P_{\xi}}{P_{\eta}} \cdot \frac{\chi_{S}^{2}}{\chi_{M}}\right)} = \frac{q_{O}^{2}}{1 + \frac{q_{\xi\eta}^{2}}{Q}},$$
(2)

где $q_O^2 = \frac{P_s}{P_{\eta}} K \Lambda_R$ - отношение "сигнал/шум" при квазинепрерывном режиме излучения и приема АФМ сигналов; $q_{\xi\eta}^2 = P_{\xi}/P_{\eta}$ - отношение "помеха/шум" на входе обработки; $P_{\zeta} = \sum_{m=0}^{(\tau_{rh} - \tau_h)/\Delta} \int_{-\infty}^{\infty} \rho_m(f) df$ - общая мощность отражений от подстилающей поверхности.

В отсутствие помех, $q_{\xi\eta}^2 = 0$, повышение отношения "сигнал/шум" можно достигнуть как путем увеличения пиковой мощности излучения, так и увеличением длительности сигнала.

При $q_{\xi\eta}^2 = Q$ мощность пассивных помех на выходе устройства обработки сопоставима с мощностью собственных шумов, и отношение "сигнал/(шум+помеха)" снижается в два раза по сравнению с обнаружением в шумах.

При мощности излучения, значительно превышающей мощность шума, справедливо неравенство $q_{\xi\eta}^2 \gg Q$, и при заданном времени когерентного накопления q(c,v) не превышает в каналах обработки значения

$$q_{\max}^2 = \frac{P_s}{P_{\xi}} K \Lambda_0 \tag{3}$$

Увеличение средней скважности зондирующего сигнала позволяет снизить потери на обнаружение в условиях помех, рис. 3,а, и повысить максимально возможный уровень отношения "сигнал/помеха" $q_{\rm max}$. Одновременно с этим энергия зондирующего сигнала фиксированной длительности снижается, а коэффициент приема, рис. 3,б, увеличивается.

Рис. 3

С увеличением N значение $q_{\rm max}^2$ повышается. Поэтому увеличение длительности сигнала, а вместе с этим и его базы, является эффективным средством повышения вероятности правильного обнаружения в условиях действия помех. Увеличение разрешения по задержке при сохранении времени когерентного накопления также приводит к повышению помехоустойчивости.

Протяженный по доплеровскому сдвигу частоты «гребень» с повышенным уровнем боковых лепестков ФН АФМ сигнала, приводит к ухудшению по сравнению с $q_{\rm max}$ значений q(c,v) во всех каналах обработки, для которых

 $\tau_c \in [\tau_h, \tau_{rh}]$. Мощность помех в частотных каналах, для которых $|f_v| > f_{max}$ (например, обнаружение сигнала 3, рис. 2), увеличивается на величину

$$P_{add}(c) = K\Lambda_R \left[\left(k_x - \frac{1}{Q} \right) \rho_{\Sigma}(c) + \left(1 - \frac{1}{Q} \right) \sum_{\substack{m=c-k_x \\ m \neq c}}^{c+k_x} \left(1 - \frac{|m|}{k_x} \right) \rho_{\Sigma}(m) \right], \quad (4)$$

где $\rho_{\Sigma}(c) = \int_{-f_{\text{max}}}^{f_{\text{max}}} \rho_c(f) df$. - суммарная мощность отражений с задержкой из

диапазона [$\tau_c, \tau_c + \Delta$ [.

Если в окрестности *c*-го дальномерного канала в диапазоне задержек $[\tau_c \pm k_x \Delta]$ действуют помехи одинаковой интенсивности суммарной мощностью $P_{\xi\Delta}(c) = \rho_{\Sigma}(c)(2k_x - 1)$, то увеличение мощности помех за счет повышенного уровня боковых лепестков ФН можно приближенно оценить величиной

$$P_{add}(c) = \rho_{\Sigma}(c) K \Lambda_{R} \left[\left(k_{x} - \frac{1}{Q} \right) + \left(k_{x} - 1 \right) \left(1 - \frac{1}{Q} \right) \right] \approx P_{\xi \Delta}(c) \frac{K \Lambda_{R}}{Q} \left(Q - \frac{1}{2} \right)$$
(5)

Среднее значение отношения "сигнал/помеха" в *с*-ом дальномерном канале становится равным

$$\overline{q}^{2}(c)\Big|_{q_{IIIII}^{2} \gg Q} = \frac{q_{\max}^{2}}{1 + \frac{P_{\xi\Delta}(c)}{P_{\xi}}\left(Q - \frac{1}{2}\right)}$$
(6)

Если мощность помех в полосе задержек $[\tau_c \pm k_x \Delta]$ составляет 1/(Q-1/2)часть от общей мощности отражений P_{ξ} , то отношение "сигнал/помеха" снизится в 2 раза по отношению к максимально возможному значению.

Если в смеси отражений присутствует компонента с параметрами опорного сигнала (c,v)-го канала обработки (обнаружение сигналов 2 и 4, см. рис. 2), то отношение "сигнал/(шум+помеха)" оценивается выражением

$$q^{2}(c,v)\Big|_{q_{\xi\eta}^{2} \gg Q} = \frac{q_{\max}^{2}}{1 + \frac{P_{\xi\Delta}(c)}{P_{\xi}} \left(Q - \frac{1}{2}\right) + \frac{P_{\xi(c,v)}}{P_{\xi}}Q(K\Lambda_{R} - 1)},$$
(7)

где $P_{\xi(c,v)} = \int_{f_v}^{f_v + \frac{1}{T}} \int_{\tau_c}^{\tau_c + \Delta} \rho(\tau, f) d\tau df$ - мощность отражений от участка поверхности

в диапазоне задержек $[\tau_c, \tau_c + \Delta]$ и доплеровских сдвигов частоты $[f_v, f_v + 1/T]$.

Степень дополнительного снижения отношения "сигнал/(шум+помеха)" при совпадении параметров полезного сигнала с областью действия помех зависит от соотношения $P_{\xi(c,v)}$ и мощности помех $P_{\xi\Delta}(c)$ в полосе задержек $[\tau_c \pm k_x \Delta].$

При $P_{\xi(c,v)} > P_{\xi\Delta}(c) \ge P_{\xi}/(Q-1/2)$ именно отношение ЭПР (c,v)-ого участка поверхности и объекта с информационными параметрами эхо-сигнала, равными (τ_c, f_v) , определяет величину $q^2(c, v)$.

При $P_{\xi\Delta}(c) \ge P_{\xi}/(Q-1/2)$ и $\frac{P_{\xi(c,v)}}{P_{\xi\Delta}(c)} \approx \frac{\Lambda_R}{K\Lambda_R-1} \approx \frac{1}{K}$, что соответствует превышению в $K/(2k_x-1)$ раз мощности отражений от (c,v)-го участка поверхности над суммарной мощностью помех $P_{\xi\Delta}(c)$ в полосе задержек $[\tau_c \pm k_x\Delta]$, значение отношения "сигнал/(шум+помеха)" снижается не менее чем в 3 раза по сравнению с максимально возможным значением при заданной пиковой мощности.

Подчеркнем, что в присутствии пассивных помех линейная зависимость $q^{2}(c,v)$ от N исчезает.

4. Анализ изменения отношения "сигнал/(шум+помеха)" по каналам обработки

Имитационное моделирование подтвердило числовые оценки помехоустойчивости РЛС с квазинепрерывным режимом излучения и приема АФМ сигналов к воздействию пассивных помех.

Мощность отраженного от обнаруживаемого объекта полезного сигнала снижается при его удалении от носителя. График изменения по задержке P_s/P_z приведен на рис. 4,а. При постоянстве мощности пассивных помех P_{ξ} это приводит к снижению по дистанции величины $q_{\rm max}^2$, рис. 4, в и 4, г.

40

30

20

10

'n

б)

г)

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N12, 2014</u>

Изменению по задержке мощности пассивных помех $\rho_{\Sigma}(c)/P_{\xi}$ и мощности помех $\rho(\tau, f_M)/P_{\xi}$ с доплеровской частотой отражений по главному лучу ДНА, см. рис. 4,а, соответствует изменение мощности помех $P_{\xi\Delta}(c)/P_{\xi}$ в полосе задержек [$\tau_c \pm k_x \Delta$], отображенное на рис. 4,б. Диапазон превышения $P_{\xi\Delta}(c)/P_{\xi}$ уровня 1/(Q-1/2) показывает диапазон снижения отношения "сигнал/(шум+ помеха)", представленный для k_x =16 и k_x = 64 на рис. 4,в.

Характер изменения по задержке отношения "сигнал/(шум+помеха)" в частотных каналах, соответствующих области отражений по главному лучу ДНА, $v_M = f_M T$, представлен на рисунке 4,г. В ближних дальномерных каналах, соответствующих отражениям по боковым лепесткам ДНА, значение $q^2(c,v)$ практически не отличается от q_{max}^2 . При достижении по задержке области отражений по главному лепестку ДНА наблюдается резкое снижение $q^2(c,v)$, которое постепенно сокращается по мере снижения q_{max}^2 .

Увеличение базы зондирующего сигнала в условиях одной и той же помеховой обстановки, $P_{\xi} = const$, приводит к пропорциональному снижению размера разрешаемого участка поверхности и уменьшению интенсивности отраженного от него сигнала $P_{\xi(c,v)}$. В результате достоверность обнаружения точечного объекта повышается.

5. Выводы

Анализ изменения мощности помех в каналах обработки в зависимости от уровня боковых лепестков ФН позволил получить простые математические выражения отношения "сигнал/(шум+помеха)", позволяющие оценить помехоустойчивость РЛС с квазинепрерывным режимом излучения и приема АФМ сигналов.

Проведенные исследования позволяют утверждать, что определяющее влияние на достоверность обнаружения оказывают помехи, маскирующие полезный сигнал по боковым лепесткам «пьедестала» ФН АФМ сигналов.

Наличие мощных помех с задержкой, отличающейся от задержки полезного сигнала не более чем на $k_x \Delta$, только ухудшает характеристики обнаружения.

Оптимизация параметров *Q* и k_x при заданной базе АФМ сигнала позволяет повысить достоверность обнаружения сигналов при воздействии пассивных помех.

6. Благодарности

Автор выражает признательность д.т.н., заведующему кафедрой радиосистем НовГУ Быстрову Николаю Егоровичу за поддержку и научное руководство.

Литература

1. Гантмахер В. Е., Быстров Н. Е., Чеботарев Д. В. Шумоподобные сигналы. Анализ, синтез, обработка. СПб.: Наука и техника, 2005. 400 с.

2. Дудник П.И. Многофункциональные радиолокационные системы: учеб. пособие для вузов/ П.И.Дудник, А.Р. Ильчук, Б.Г. Татарский; под ред. Б.Г.Татарского. М.: Дрофа, 2007. 283 с.

3. Слока В.К. Вопросы обработки радиолокационных сигналов. М.: Сов. радио, 1970. 256с.