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Abstract. A method is proposed that allows to largely overedhe diffraction limit, as
well as noise and other interferences in radio ingglevices (including ground and
space telescopes) of millimeter, terahertz andnfaared ranges of the electromagnetic
radiation in conformity with problems of reconstiioo of images of the observing
objects (the density distribution of sources). T$matial (angular) resolution and
precision of the distributions of the observing e@s are significantly higher in
comparison with existing radio imaging devices lo¢ tspecified ranges. This article
describes the mathematical methods used to sabge fbroblems. The article focuses on
the simplest problem of the simulating of the imdgemation with a subdiffraction
resolution using a one-dimensional experimentalehotisingle aperture telescope. It is
described the named experimental model and thesmonding experimental setup, the
main components of which are the source of thetreleagnetic radiation with a
wavelength ofd J1,2mm on the basis of the backward wave tube, thedefee imitator
based on two paired Teflon lenses, the radiatidactier in the form of optic-acoustic
receiver (Golay cell) and two precision coordintbles with the electrical drive that
moves the telescope imitator and the Golay cele uthe said moving the work of the
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telescope itself and the image being observednaitated. The result of the modeling
has revealed itself in the estimation of improvenwdrthe spatial (angular) resolution of
radio the imaging devices of the specified abowgea up to ~ 150 times.

Key words: radioastronomy and radio imaging devices of tetaheange of
electromagnetic radiation, ground and space tgbes;omethods of improving the
characteristics, including the angular resolutia, telescopes and radio imaging

devices.

Introduction

The authors of the patéhthave proposed the method permitting to largely
overcome the diffraction limit as well as a noisel ather interferences in radio imaging
devices (including the ground and space telescopkesjillimeter, terahertz and far
infrared ranges of the electromagnetic radiatiorcamformity with problems of the
reconstruction of images of observed objects (tlstribdution of radiation sources
density). The spatial (angular) resolution and ghess of the getting distributions of
sources are significantly higher in comparison \eitisting radio imaging devices of the
specified ranges, to which the mentioned above odetims not been applied. This
means the single aperture radio imaging deviced, abserved images means two-
dimensional.

The distribution function of the radiation sourc#gsnsity is the solution of the
integral equations of the first kind. The corregiiog problems of finding the specified
function are ill posed. The instability of ill-paseproblems and the inaccurate
information about the input data require the deweient of so-called regularizing
algorithm&?. The requirements for these algorithms increasenwtonsidering tasks,
the exact solutions of which are functions withoaplex structure (tears, corner points,
etc.). To clarify the nature of the sought solutalows the use of prior information of

various typed.
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The distribution function of the density of the smes is obviously a function with
multi-scale structure due to the different brigissieand contrast of images. This
circumstance gives the rise to the presence ofuknges in solution of problem
(unsmoothed unknown function).

The traditional methods give “smoothing” of the Wmn in the vicinity of
singularities of the unknown function (blurred dw@u), the greater, the greater

inaccuracy of input data (this error is determined by the distortion of gotical

system, error of the measuring system, as welhasptesence of noise of different
origin). The total distortion of the sought solutionay be unacceptable even for
moderate levels of error input data

However, in a wide range of applied problems thera priority information about
the solution, use which, when building the corregfilog methods, can significantly
improve the quality of approximate solutién.

To do this, in the development of a regularizatgorithm, it is necessary to use
the methods of selection of approximations, engudonvergence of the approximate
solution to the exact one together with the derveaat the plots of the corresponding
smoothness. Indeed, the visual nature of the chamgye at a given point is defined by
a coordinate and a direction of a tangent. Theeeforinging on smooth areas, not only
the decision itself, but also its derivative, itgessible to improve the quality of the
approximations.

This article describes the simulation results efphoposed method of reconstruction
of the distribution function of density of sourams theexperimental one-dimensional

model (the imitator) of single aperture telescopmitlimeter range X J1.2 mm).

Methods of solving the considered problems
Consider the main features of the proposed alguostland their differences from
traditional methods of regularization.

Imagine the task in the operator form:
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Au=f (1)
Here A is the integral operator of the 1st kindl,- the right side (the result of
measurement)) - is the desired solution.
If the right partf is known not exactly, but with some erdr(|f - f5| <o, | - the
norm in functional spade fOF), the approximate solutions, some that
|Au; - f;|<d can be arbitrarily hard to distinguish from eadieo when J is

arbitrarily small.
The vast majority of regularizing algorithms of @wobn of the problem (1),

traditionally based in one form or anotfiét for minimization of the functional
M° =|Au- fl+a0(u)) @)

At the same time& - is the so-called stabilizer annd . regularization parameter.

The stabilizer is introduced in order to ensure tht@bility of the resulting

approximations to small changes fafince solving the problem of minimizing the
functional min||Au - f| does not possess the property of stability.

In equation (2) one may see the cause of the abmawothing (blurring) of the
solution. Such smoothing makes use of a completalgtinuous operatorA in

functional M .

To find the distribution function of sources in theesent project it is proposed to
use ideas of works”. The main difference is represented in these wagarding
algorithms and traditional methods, is that insteb(®?) a variational problem of finding
the minimum variation of the sought solution (erderivatives) is introducing:

mlnL(u,U,u ,) (3)

After this the ratid Au, - f;| < J is considered as an additional condition, alorify wi

other conditions resulting from a priori informati@about the decision and recorded in

the form of linear constraints on the desired sofut
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The variation of function characterizes the differability properties of this
function, and the differential operator is unbouwhdand, therefore, may have a
continuous inverse operator, that gives the oppdstiio build sustainable solutions that
preserve the properties of smoothness of the redjumnction. The solution of the

problem (3) does not require the introduction aébdizers" (it is possible to prove that

the functionalityL(u,u’,u",...)is known as a "stabilizer"}and also allows to refuse from

the concept of the regularization parameter
The proposed method of solution is as follows.

Consider the integral equation

Au= I G(x,y,s,t)u(x,y)dxdy :f(s,t),

Q(xy)

(x,y)0Q(x,y), (s,£) 0Q(s,1). @)

The corresponding transformation of the densityritistion of sources (unknown
function u(x,y)) to the measured valug(s,t) (the image). In (4):Q(x,y) - the scope
of u(x,y); Q(s,t)- the scope of (s,t).

Let the known measurement errar: |Au-f|.<d due to the properties of

measuring instruments, and diffraction effects,wadl as "noise". HerdAu- f] is

marked the norm in the function spaE(aQ(s,t)), fOF.

As the desired function deals with the solution of the variational problem

u(x,y) =argmin (LQ(X’y) (u))

|Au-f|<5

(5)

In the formula (5) Lo, y) (u) is a variationu(x,y)or its derivative. The problem (5)
is solved under additional constraints on the @dsianction, which follow from a priori
information about this feature. For example, thevials is the requirement of

nonnegativity of the solution=>o0.
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The attraction of a priori information clarifiesetimature of the required solution and
in some cases, can significantly improve the aayuod the approximations. Therefore,
the more relevant methods is taken into accountattaéiable a priori information, the
generally higher quality of the obtained approxensolutions.

Thus, the algorithm for the approximate solutioropérator equation (4) is reduced
to the solution of problem (5) under additional stoaints relevant a priori information
of various types and recorded in the form of lineanditions (inequalities) on the
functionals of the desired solution.

In the numerical realization of the proposed metbbrkeconstruction of distribution

of density of sources conducted sampling two-dinoerad fields Q(xl.,yj)and
Q(sn,tm).
In the simplest case Whe[%(x’y) (u) in (5) denotes the variation of functiar{x,y)

minimized functionality in a discrete are}a(xl.,yj) is written in the form:

N, N,-1 N1 N,
L(u) = Z Z ‘”i,jﬂ ~U ‘ * Z Z‘UHLJ —U ‘
i=l j-1 i=1 j-1 (6)

The inequality|Au - f|, <Jd makes sense limits and with the requirements of non

negativity of the sought solution& 0) as follows:

N, LN, -1
max| p, ., = Z Z Uy O m;  AXAY,|SO,U; 2 0,
LS = 7)

In the formula (7) the above symbols are introduced
Pam =S (Srtn) s Qi :G(sn,tm,xi,yj).
Thus, the solution of the original problem for #guation (4) is approximated by the
solution of the discrete problem (6), (7).

Note in concluding this section that, in practigew the hardware features specific

experiment (the kernel of equation (4)) is rarelyown with sufficient degree of
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accuracy. Therefore, in the general case, the search forrélyaired distribution of
sources according to the observation is reducéuaktsolution of two problems:

Determining the response function of the system and
Proper reconstruction of the distribution functafrthe density of sources.

To address the first of the specified tasks appres@nd algorithms are described

ini’l. The ways of solving the problem (4) are basedalesady mentioned, on the
paperS™.
The formulation of the one-dimensional problem
The simplified one-dimensional diagram of the expent is presented at Fig. 1.
Let the desired density of the distribution of eddin sources iSI(X), X D(a, b).
Let the center of telescope imitator is at the poki=0 (Fig.1). The image
f (s), sO(c,d) of observed object is formed on the line of detersoThe equation
linking the density of sources and their imageshendetector line, written in the form:

le(X, su(x)dx = f (s),s0(c,d). (8)

a

!
Radiation'sources
X

!
a i
i

Telescopelimitator

I
Detecdfors s
i

W )

|
i0

Fig.1. The simplified one-dimensional dieagrof the experiment.

Thus, the problem of finding the functidm(x) is reduced to the solution of the

integral equation (8) of the first kind. Followinlge remarks at the end of the previous
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section, we first need to define a funct@ﬁx,s). The kernel of integral operator
G(X,S) in equation (8) having the sense of the instrunefiiaction of the

experimental setup is determined as folléws
b

G(x,s) = jG(z,s)J(x -2z)dz=f (x,s).
2 9)

Formally, the relation (9) determines the respafstie “optical” and measurement
system (in our case — series (line) of detect®sg (@ahead) to a point source of unit

b
power (i.e.J‘é'(X) dx =1). The quality (9) indicates the method how to determire t

kernel of the integral equation (8) being thardware feature of the one-dimensional

experiment. That is, in

order to build G(X,S), one must measure the signzil(x,s) at each point
SD(C, d) from the radiation delta-source at each p(xi(a, b).

It is important to note that the functidd(X,s) is defined by the “optical” system,

so and by measuring (recording) device.
For the numerical solution of equation (8) it ix@ssary to perform discretization of

N

the problem. It is introducing two discrete gr{d(j}_ x1 :{a: Xy Xoy ooy Xy = b} and
J: X

grid {Sn}::l :{C: SHS .S :d}. Using such discrete grids in some way
approximated the density of sourca§(s) ~u(S) and the readings of the detectors
f,(s) ~ f (s) and also the kernéb, (x,s) ~ G(x,s) of equation (8).

The function vaIuesGa(X,S) at the nodal points of the two-dimensional area

Qa(xj,sn) are obtaining by menace of the measuring the sifyaal a point source,
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located at the poink; by detector located at the poig{ for all valuesj,n. The

function vaIuesGa(x,S) at intermediate points of the regi@ha(x,s)can be obtained,

for example, using bilinear interpolation.

The density of sourcesuf(s)~u(s)) and the readings of the detectors
(f.(s)~ f (9)). as well as the ke, (X,s) ~ G(X,s) of the equation (8) have to be
approximated in some way on said above grids. Tinetion vaIuesGa(X,S) at the

nodal points of the two-dimensional aré)aa(xj ,Sh) are obtaining by measuring the

signal from a point source at poix} by the detector located at pomt for all indexeg

and n. The function vaIuesGa(X,S) at intermediate points of the region can

Qa(x,s) be obtained, for example, using bilinear interpolat

The discrete analogue of problem (5) in the oneedsional case is written plainly:
NX
L(u) = Z|ui - ui—1| (10)
i=2
with the restrictions:

max
1<nsN

<o, u=0

J

NX
P, — u.qn.Ax.
; i =0 (11)

In (11): p,=f(s.); 4., =G(s.x;).

Experimental setup for image formationf(s)

A sketch of the setup is presented in Fig. 2. Alhponents installed at the top row
are part of the spectrometer of millimeter/submméier range of the Institute of General
Physics named after A. M. Prokhorov of RASThe coordinate tables are produced by
the Company "SPF Electric Drivd" The coordinate tables drivers movement and the
data acquisition are realizing by means of the ensial software complex developed in
IRE RAS™,

The selected scheme of the movement of the telescojpator in relation to fixed
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BWT and the movement of the Golay cell in relattorthe telescope imitator in each
position of the telescope imitator in the horizémpiane along lines perpendicular to the

axis quasi-optical tract, during the measuremerasgss, is presented in Fig.3.

The backward-wave

IT) - The opto-acoustic converter
E&in@:ﬁﬁuiﬁ The obturator The two paired lenses {the Golay cell). the signal
Ry ’ =23Hz, GF=530mm 120mm, to nolse ratio = 10%.107, the
i; ey W), the telescope imitator, signal detector,

LSS R K
The BWT with a magnet o The load-beanng
in the casing bemng fixed o /.. platforms, set on the
still on the first base, /}" casdinabe fbles:
“l#  each pair is moving
ndependently,
The first coordinate table om the basis of the The another coordimate table on the basis of BST.

ball-screw transmission (BST).

Both tables with platforms are mounted on the second single base.

Fig.2. The sketch of experimental setup for thegentormation modeling.

It is clear that the described experimental setugsdot give direct opportunities to
obtain the coreGa(X,S) of the equation because it uses one source andaiaetor

To simulate the set of sources it has proposed eéhamesm to move the "telescope
imitator”, and to simulate a set of detector it Ipagposed a mechanism to move the
detector. This method has several advantages lo@erctual use of multiple sources and
multiple detectors. It is obvious, first, that tmsethod can achieve the identity of
radiation sources and detectors of the measurisigisy Secondly, such a scheme of the
experiment, of course, reduces the cost of theinedjequipment.

Using the described setup, there were performeatiassof experiments, the results

of which made it possible to construct the respdugsetion of the recording apparatus

10
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(the core of the equatidB, (X,S)). The functionGa(x,S) is shown in Fig. 4.

BWT The BWT is fixed
Telescope
imitator
25 positions of the telescope
imitator with the step 3 mm.
including zero position.
during 1ts movement
relative to BWT
36 mm (from 0) 36 mm —
Gollay cell

----------------------------------------------------------------------------------
o
g

M

49 positions of the Gollay cell with the step 2 mm,.
including zero position. during the movement relative to
the telescope imitator. in each position of it
+«— 48 mm (from 0) 48 mum —

Fig. 3. Thescheme of reciprocal movements of parts of the iaxygatal setup (in a

plan view).

11
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Fig. 4. The graph of the functic@a(x,s)

The simulation results
To demonstrate the capabilities of the developethoaeof reconstruction of the field
of sources (radiation sources density) there had blene a series of model calculations

within the model of described above for one-dimenal experiment.

As hardware function there was used the built He@g(x,s) of the integral

equation (4) shown in Fig. 4. The field sourcesavasked in the form of two point
sources located at different distances from ealsbrowithin the diffraction blur of the
recorded image.

It is shown in Fig. 5 an example of calculation,entthe distance between sources is
1 mm, and the noise level is 2%. To the Fig. 5the-image recorded by the line of
detectors, to the Fig.5,b the result of the recontbn of the field of sources. The

abscissa in these figures is the distance in mm.ti@nFig. 5,a is the position of

12
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detectors (lines in Fig.1), on the Fig.5,b is the position of sowr¢ene Xin Fig. 1).

0.045

0.04 -

0035
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0.015

0.011

0.005

30 40 50

Fig.5,a. The image obtained using the line of detsc

Solutionsd = 2%

1 1.5 2 15 | 15 B
mm

Fig.5,b. Exact (blue) and reconstructed fieldadrces (red).

It is shown in Fig. 6 an example of calculation,entihe distance between the sources

is equal to 0.1mm, and the noise level is 2%. EoRiy. 6,a — the image recorded by the

13
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line of detectors, to the Fig. 6,b the result &f thconstruction of the field sources. The
abscissa in these figures is the distance in mm.
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Fig. 6,a. The image obtained using the line of detectors

Solutions §=2%
1.2

0.8}
06}
Dar

02+

2 205 2.1 2.15 22 2.25 23
mm

Fig. 6,b. Exact (blue) and reconstructed fieldairses (red).
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Note, that the half-width of the diffraction blur the above examples is of the order
of 15mm. Thus, in the first example, the resolut@nthe two sources exceeds the
blurred image by 15 times, and in the second obg 150 times. For the selected noise
level (2%) resolution 0.1 mm is a limit. With thecrease of noise level up to 5-7%
limiting resolution deteriorates approximately knly .

Conclusion

It is important to note that the results obtainel fast, the provisional nature and
require further investigations, both in experimémian and in terms of reconstruction
algorithms of the field of sources. It is also inant to say, that the transition to real
two-dimensional images requires the use of moreptexnalgorithms and significantly
more powerful (including hybrid) computing hardwaire particular, due to the fact that
hardware features in the two-dimensional case dtmeion of four variables and its

determination requires a huge amount of calculation
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