УДК 621.371+537.87

# БЛИЖНЕПОЛЬНАЯ ИМПУЛЬСНАЯ СВЧ ДИАГНОСТИКА ПОДПОВЕРХНОСТНЫХ ДИЭЛЕКТРИЧЕСКИХ НЕОДНОРОДНОСТЕЙ

К. П. Гайкович<sup>1,2</sup>, Е. С. Максимович<sup>3</sup>

### <sup>1</sup> Институт физики микроструктур Российской академии наук, г. Нижний Новгород <sup>2</sup> Нижегородский государственный университет им. Н.И. Лобачевского <sup>3</sup> Институт прикладной физики Национальной академии наук Беларуси, г. Минск

Статья поступила в редакцию 30 января 2016 г.

**Аннотация.** Приводятся первые результаты исследования метода импульсной CBЧ диагностики трехмерных распределений комплексной диэлектрической проницаемости подповерхностных диэлектрических неоднородностей. Диагностика основана на решении обратной задачи ближнепольного рассеяния по данным двумерного сканирования приемо-передающей системой. В статье предлагается алгоритм решения обратной задачи рассеяния, и демонстрируются результаты томографии и голографии тестовых подповерхностных объектов в ближней зоне зондирующего сигнала.

**Ключевые слова:** томография, голография, диэлектрик, неоднородные среды, рассеяние СВЧ излучения.

**Abstract.** First investigation results are given for a new method of pulse diagnostics of 3D distributions of complex permittivity of subsurface dielectric inhomogeneities. This diagnostics is based on the solution of the near-field inverse scattering problem by data of 2D scanning with the transceiver system. In this paper a solving algorithm is proposed for this inverse scattering problem, and results of tomography and holography of test subsurface targets in the near field zone of the probing signal are demonstrated.

**Key words:** tomography, holography, dielectric, inhomogeneous media, scattering of microwave radiation.

#### 1. Введение

Ближнепольная СВЧ диагностика основана на решении обратной задачи рассеяния по данным СВЧ измерений поля, рассеянного диэлектрическими объектами на глубине порядка размеров ближней зоны в среде для наибольшей длины волны частотного диапазона зондирующего сигнала. Диагностика объемных неоднородностей включает компьютерную томографию (получение (3D) трехмерного распределения) комплексной диэлектрической проницаемости распределенных подповерхностных неоднородностей И голографию (определения формы поверхности) сплошных диэлектрических объектов.

Ближнепольные измерения привлекают возможностью выхода 3a ограничение разрешающей способности, релеевское что является единственным способом в случае, когда переход к более коротковолновому диапазону невозможен из-за сильного ослабления поля в среде. Эта возможность может быть особенно востребованной в медико-биологических приложениях. В работах [1-4] были развиты различные подходы к такой диагностике, основанные на измерениях рассеянного сигнала в двумерной области над областью среды с подповерхностными неоднородностями при ее зондировании непрерывным гармоническим сигналом. До некоторой степени аналогичные подходы в настоящее время развиваются и с целью получения радиоголографических изображений двумерных подповерхностных металлических неоднородностей [5].

Для диагностики трехмерных неоднородностей недостаточно данных двумерного сканирования, поэтому глубинную чувствительность обеспечивают измерения в зависимости от третьего параметра. В [1-4] были предложены методы, в которых в качестве такого параметра использовались частота сигнала, размер апертуры приемной антенны или расстояние от уровня сканирования до поверхности среды.

2

В данной работе развивается новый подход к ближнепольной сканирующей томографии, основанный на использовании импульсного зондирующего сигнала, где глубинную чувствительность определяет временная зависимость рассеянного импульса. В нем используется схема измерений, предложенная в [2], в которой измерения в двумерной области над неоднородностью выполняются с помощью жестко связанной системы "источник-приемник". Такая схема, использованная в [2-4], приводила 3D уравнение для рассеянного сигнала в борновском приближении к уравнению типа свертки, редуцируемому к одномерному интегральному уравнению, которое решалось для каждой пары волновых чисел двумерного поперечного спектра.

Это позволило преодолеть принципиальные ограничения численного решения на размерность, возникающие в трехмерных задачах. Было также показано, что этот подход позволяет получать и некоторую коррекцию к решению в борновском приближении. Поперечные спектры функций Грина, образующие ядро решаемых уравнений, были получены в [2] в явном виде. Там же был апробирован и метод решения таких уравнений Фредгольма 1-го рода для комплекснозначных функций в пространстве Соболева W<sub>2</sub><sup>1</sup>, основанный на принципе обобщенной невязки. Описанный метод томографии был реализован эксперименте для метода многочастотной подповерхностной СВЧ В томографии неоднородностей в грунте [3,4], где оказалось возможным получить томографические и голографические изображения субволнового разрешения диэлектрических объектов в слабо поглощающих средах до глубин около 10 см.

В данной статье представлены постановка обратной задачи рассеяния для ближнепольной импульсной СВЧ диагностики, соответствующая математическая теория, алгоритмы методов томографии и голографии, а также первые результаты экспериментов по зондированию подповерхностных неоднородностей в импульсном режиме. Среди возможных применений этой

3

методики весьма важными представляются ее использование в дефектоскопии и медико-биологических приложениях.

#### 2. Теория

Предлагаемая ближнепольная диагностика основана на решении обратной задачи рассеяния по данным измерений двумерного распределения связанных с неоднородностью вариаций комплексных амплитуд принимаемого сигнала  $s(\mathbf{r}_r,t)$  по поперечным координатам  $x_r$  и  $y_r$ , измеряемого при сканировании на уровне  $z_r$  ( $\mathbf{r}_r$  – вектор, определяющий положение приемника).



Рис.1. Схема измерений.

Эти вариации связаны с вариациями рассеянного поля, распределение которого в среде с неоднородностями можно определить с использованием формализма функций Грина, которые, однако, неизвестны для полей с произвольной временной зависимостью. Но, поскольку они известны для полей, порождаемых гармоническим сигналом в произвольных многослойных средах [2], естественным представляется использовать в анализе разложение импульсного сигнала, заданного в интервале  $\Delta t$ , в частотный спектр:

$$s(\mathbf{r}_r, \boldsymbol{\omega}) = \frac{1}{2\pi} \int_{\Delta t} s_1(\mathbf{r}_r, t) \exp(-i\boldsymbol{\omega}t) dt , \qquad (1)$$

который имеет вид свертки по поперечным координатам рассеянного поля с передаточной функцией измерительной системы:

$$s(\mathbf{r}_r, \boldsymbol{\omega}) = \int \mathbf{E}(\mathbf{r}', \boldsymbol{\omega}) \mathbf{F}(x_r - x', y_r - y', z_r, z', \boldsymbol{\omega}) dx' dy' dz'$$
(2)

#### ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N2, 2016

Выполняя двумерное преобразование Фурье по поперечным координатам *x<sub>r</sub>* и *y<sub>r</sub>*, получаем интегральное соотношение для поперечного спектра трансформированного сигнала:

$$s(k_x, k_y, \omega) = \int \mathbf{E}(k_x, k_y, \omega, z') \mathbf{F}(k_x, k_y, \omega, z') dz'$$
(3)

Если в среде с комплексной диэлектрической проницаемостью  $\mathcal{E}_0$  имеется рассеивающая трехмерная неоднородность  $\mathcal{E}_1 = \mathcal{E}'_1 + i\mathcal{E}''_1$ , так что  $\mathcal{E}(\mathbf{r}) = \mathcal{E}_0 + \mathcal{E}_1(\mathbf{r})$ , то комплексные амплитуды электрического поля на частоте  $\omega$  могут быть представлены как сумма зондирующего и рассеянного полей. Для предлагаемой схемы сканирования (см. на рис.1) жестко связанной системой источник-приемник, взаимное положение которых определяется вектором  $\delta \mathbf{r}$ , определяющим сдвиг между приемной и передающей антеннами, поперечный спектр рассеянного поля (двумерное фурье-преобразование по *x* и *y*) в борновском приближении может быть представлен как интеграл от глубинного профиля поперечного спектра неоднородностей в виде [2]:

$$E_{i}(k_{x},k_{y},\boldsymbol{\omega},z,\boldsymbol{\delta r}) = -4\pi^{3}i\boldsymbol{\omega} \int_{z'} \mathcal{E}_{1}(k_{x},k_{y},z') \{ \iint e^{-i\kappa_{x}\delta x - i\kappa_{y}\delta y}$$
(4)

$$\times \int_{z''} [j_i(\kappa_x,\kappa_y,z''-z-\delta z,\omega)G_{ij}^{12}(\kappa_x,\kappa_y,z'',z',\omega)]G_{ji}^{21}(\kappa_x+k_x,\kappa_y+k_y,z',z,\omega)d\kappa_xd\kappa_ydz'']dz'.$$

Подставляя (4) в формулу (3), имеем интегральное уравнение:

$$s(k_x, k_y, \omega) = \int_{z'} \varepsilon_1(k_x, k_y, z') K(k_x, k_y, z', \omega) dz, \qquad (5)$$

$$K(k_x, k_y, z', \omega) = -4\pi^3 i \omega \int_{z} \{F_i(k_x, k_y, z, \omega) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\kappa_x \delta x - i\kappa_y \delta y}$$
(6)

$$\times \int_{z'} [j_i(\kappa_x,\kappa_y,z''-z-\delta z,\omega)G_{ij}^{12}(\kappa_x,\kappa_y,z'',z',\omega)]G_{ji}^{21}(\kappa_x+k_x,\kappa_y+k_y,z',z,\omega)d\kappa_xd\kappa_ydz'']dz,$$

ядро которого *К* выражается через компоненты поперечного спектра тока **j** и функций Грина  $G_{ij}^{12}, G_{ij}^{21}$  для волн, распространяющихся из среды 1 в среду 2 и обратно [2]. Интегральное уравнение (6) формально совпадает с уравнением, которое лежит в основе метода многочастотного ближнепольного зондирования [2-4], однако в данном случае исходные данные для решения обратной задачи

(5) получаются путем разложения импульсного сигнала в частотный спектр. При численном решении такой задачи параметрами становятся шаг разложения по частоте и ширина спектрального интервала анализа $\Delta \omega$ . Учитывая, что сигнал является действительной величиной, в решении (5) может использоваться только положительная часть спектра сигнала.

Для решения (5) может применяться алгоритм метода обобщенной невязки для комплекснозначных функций, развитый в [2]. В результате из решения в *k*-пространстве задачи (5) путем обратного фурье-преобразования получается решение задачи томографии – искомая трехмерная структура комплексной диэлектрической проницаемости:

$$\varepsilon_1(x, y, z) = \iint \varepsilon_1(k_x, k_y, z) \exp(ik_x x + ik_y y) dk_x dk_y.$$
(7)

Используя аналогию математического аппарата, так же, как в методе многочастотного СВЧ зондирования [3,4], можно предложить метод компьютерной голографии (восстановления формы поверхности) сплошных, внутренне однородных объектов, которые чаще всего встречаются на практике. Если *a priori* известно, что диэлектрическая проницаемость объекта  $\varepsilon_1^0$  постоянна, то задача томографии может быть редуцирована к задаче восстановления числовой формы объекта, используя полученное из (5) решение  $\mathcal{E}_1(K_r, K_v, z)$  B *k*-пространстве, задачи томографии В виде двух функций  $y_1(x,z)$ ,  $y_2(x,z)$  из решения комплексного трансцендентного уравнения, которое эквивалентно системе двух реальных уравнений:

$$\mathcal{E}_{1}(k_{y},x,z) = \frac{\mathcal{E}_{1}^{0}}{2\pi i k_{y}} \left( e^{-ik_{y}y_{1}(x,z)} - e^{-ik_{y}y_{2}(x,z)} \right),$$
(8)

$$\boldsymbol{\varepsilon}_{1}(k_{y}, y, z) = \int_{-\infty}^{\infty} \boldsymbol{\varepsilon}_{1}(k_{x}, k_{y}, z) \exp(ik_{x}y) dk_{x},$$

что и позволяет получить из его решения обе функции, определяющие форму объекта. Переопределенность этого уравнения позволяет различным образом оптимизировать алгоритмы его решения.

#### 3. Результаты эксперимента

В экспериментах использовалась та же сканирующая система, что и в экспериментах [3,4] для многочастотной подповерхностной СВЧ диагностики. В импульсном зондировании аппаратура включала в себя цифровой осциллоскоп GZ10E, генераторную головку с центральной рабочей частотой 3,5 ГГц спектра сигнала в форме моносинуса, а также приемо-передающие bow-tie широкополосные дипольные антенны, имеюшие широкий передаточной пространственный функции. Сканирование спектр осуществлялось по сетке 39×51 точек с шагом 0,5 см. Измерения выполнялись для объекта из пенопласта размерами  $3 \times 3 \times 1$  см<sup>3</sup> на глубинах  $z_t = -0, 5, -1, -2, ...,$ -10 см в песчаной среде с диэлектрической проницаемостью  $\mathcal{E}_0 = 3,0+0,05i$ .



Рис.2. *а*) зондирующий импульс; *b*) рассеянный сигнал при глубине объекта  $z_t = -2$  см.

На рис.2 представлены результаты измерений рассеянного сигнала  $s(\mathbf{r}_r, t)$ , параметра временной зависимости *t* используется котором вместо В зависимость от параметра эффективной глубины рассеивающего элемента z<sub>s</sub> согласно  $s(x, y, z_s) = s(x_r = x, y_r = y, z_r = 0, t = -2z_s \operatorname{Re} \sqrt{\varepsilon_0} / c)$ . Нулевое значение параметра *z*<sub>s</sub> соответствует времени прихода сигнала, рассеянного OT поверхности среды. Зондирующий импульс генератора и импульс рассеянного сигнала от заглубленного на 2 см объекта показаны как во временном масштабе, так и в соответствующем масштабе эффективной глубины рассеивающего элемента. Помимо отклика от зондируемого объекта виден также отклик от дна емкости (при z<sub>s</sub> ~ -30 см). На рис.3 представлены результаты измерений распределения амплитуды рассеянного импульса вдоль

линии, проходящей над центром объекта при его положении на различных уровнях по глубине, в зависимости от параметра эффективной глубины рассеяния.



Рис.3. Амплитуда рассеянного импульса  $|s(x, y = 10 cm, z_s)|$  вдоль направления оси *x* при y = 10 см (над центром заглубленного объекта) в зависимости от эффективной глубины рассеивающего элемента  $z_s$  для объекта на различных глубинах  $z_t$ : *a*)  $z_t = -1$  см; *b*)  $z_t = -2$  см; c)  $z_t = -7$  см; *d*)  $z_t = -9$  см. Вставки показывают глубинное положение зондируемого объекта на оси  $z_s$ .

На рисунках отчетливо видны области отклика, соответствующие глубине залегания объекта. Длинные полосы на рисунках соответствуют отражению от слоистой структуры плотности среды, возникающей при заглублении объекта путем последовательного досыпания грунта. В этой связи интересно отметить, что проявление в сигнале таких вариаций указывает на возможность постановки задачи восстановления глубинного профиля одномерных неоднородностей такого типа. На рис.4 показаны распределения амплитуды рассеянного импульса в поперечном сечении для нескольких значений параметра эффективной глубины рассеяния вокруг истинной глубины залегания объекта. Видно, что при значениях z<sub>s</sub>, соответствующих глубинам объектов ( $z_t = -2$  см,  $z_t = -7$  см), эти объекты различимы наиболее отчетливо. Более того, в них до некоторой степени проявляются особенности формы объекта. Такая визуализация исходных данных весьма полезна для предварительной локализации положения объекта с целью сужения области поиска решения, что может существенно уточнить результаты последующего предложенного выше анализа.

8



Рис.4. Амплитуда рассеянного импульса  $|s(x, y, z_s)|$  для объектов на двух различных глубинах: Верхний ряд: объект на глубине  $z_t = -2$  см; распределения показаны в трех сечениях по величине параметра эффективной глубины рассеяния:  $z_s = -1 cM$ ,  $z_s = -2 cM$ ,

 $z_s = -3 \, cm$ . Нижний ряд: объект на глубине  $z_t = -7 \, cm$ ; показаны распределения

при 
$$z_s = -6 \, cm$$
,  $z_s = -7 \, cm$ ,  $z_s = -8 \, cm$ 

На рис.5 показаны частотные спектры рассеянного сигнала в k-пространстве, которые являются входными данными для решения обратной задачи томографии на основе интегрального уравнения (5) для объектов на глубинах  $z_t = -1$ , -2 -7, -9 см вдоль линии, проходящей через центр неоднородностей.



Рис.5. Амплитуда частотного распределения поперечного спектра рассеянного импульса  $|s(k_x, k_y = 0, f = \omega/2\pi)|$  для объектов на глубинах: a)  $z_t = -1$  см; b)  $z_t = -2$  см; c)  $z_t = -7$  см; d)  $z_t = -9$  см.

Можно видеть, что с ростом глубины залегания объекта за пределы ближней зоны сужается пространственный спектр рассеянного сигнала, то есть в нем хуже представлены мелкомасштабные детали объекта. Таким образом, приведенные результаты исследования сигнала показывают, что импульсные измерения являются информативными, а это создает необходимые условия для успешного применения предложенных методов ближнепольной диагностики.

На рис.6 представлены результаты решения задачи томографии – восстановление распределения реальной части комплексной диэлектрической проницаемости из решения уравнения (5).



Рис.6. Результаты томографического анализа – томографические разрезы восстановленного распределения в вертикальной плоскости через центр объекта по оси у. Слева – для объекта на глубине  $z_t = -2$  см; справа – на глубине  $z_t = -7$  см.

Изображения демонстрируют хорошее согласование с реальными размерами, положением и общей формой объектов. Также, для объекта на глубине  $z_t = -2$  см имеет место хорошее согласование по величине  $\varepsilon'_1$ ; однако с увеличением глубины изображение объекта расплывается, и погрешность решения постепенно возрастает – что является следствием затухания мелкомасштабных ближнепольных компонент сигнала, которое можно видеть из сравнения рис.5*b* и рис.5*c*.

На рис.7. показаны результаты голографического анализа для тех же объектов, что и на рис.6.



Рис.7. Результаты голографического анализа. Верхний ряд – на глубине  $z_t = -2$  см; нижний ряд – на глубине  $z_t = -7$  см. В рядах слева – голографические изображения половины зондируемых объектов, представленные функцией  $y_1(x,z)$ ; справа – половины, представленные функцией  $y_2(x,z)$ .

Изображения на рис.7 хорошо воспроизводят форму объекта на глубине  $z_t = -2$  см и демонстрируют ее расплывание при  $z_t = -7$  см (при удалении за пределы ближней зоны для высокочастотных компонент спектра сигнала). Следует подчеркнуть, что это только первые результаты, которые, несомненно, могут быть улучшены при оптимизации параметров измерения и алгоритмов обработки данных. В целом, результаты работы показывают перспективность предложенного метода для подповерхностной диагностики, как для указанных во введении приложений СВЧ зондирования, так и в других диапазонных электромагнитных волн, или в акустическом зондировании.

Исследования были выполнены при поддержке РФФИ, проекты № 15-47-02294-р\_поволжье, 16-52-00051-Бел, отдельного проекта научных исследований НАН Беларуси № гос. регистрации 20140818, программы ОФН РАН IV.13, а также частично поддержаны грантом Минобрнауки РФ (соглашение от 27 августа 2013 г. № 02.В.49.21.0003 между МОН РФ и ННГУ).

## Литература

- Gaikovich K.P. Subsurface Near-Field Scanning Tomography // Physical Review Letters, vol. 98, no. 18, pp. 183902 (1-4), 2007.
- 2. Gaikovich K.P., Gaikovich P.K. Inverse problem of near-field scattering in multilayer media // Inverse Problems, vol. 26, no. 12, pp. 125013 (1-17 pp.), 2010.
- Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Pseudopulse near-field subsurface tomography // Physical Review Letters, vol. 108, no. 16, pp. 163902 (1-5 pp.), 2012.
- 4. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Subsurface near-field microwave holography // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., vol. PP, issue 99, pp.1-9 (IEEE Early Access Articles), 2015.
- 5. Razevig V.V., Ivashov S.I., Sheyko A.P., Vasiliev I.A., Zhuravlev A.V. An example of holographic radar using at restoration works of historical building // Progress in Electromagnetic Research Letters., vol.1, pp. 173-179, 2008.