УДК 621.391.01

АЛГОРИТМЫ НЕКОГЕРЕНТНОГО ПРИЕМА СИГНАЛЬНО-КОДОВЫХ КОНСТРУКЦИЙ НА ОСНОВЕ БЛОКОВЫХ ТУРБО-КОДОВ

Л. Е. Назаров¹, П. В. Шишкин² ¹ФИРЭ им. В.А.Котельникова РАН, г. Фрязино ²ОАО "Российские космические системы", г. Москва

Получена 26 июня 2012 г.

Аннотация. Приведены описания и результаты исследований методов некогерентного приема сигнально-кодовых конструкций на основе блоковых турбо-кодов при отсутствии оценок о начальных фазах радиосигналов в приемных устройствах.

Ключевые слова: некогерентный прием, блоковые турбо коды, код Уолша-Адамара.

Abstract. The results of noncoherent decoding algorithm for block turbo codes are presented.

Keywords: noncoherent decoding, block turbo-codes, Walsh-Hadamard codes.

Введение

Проблема разработки методов некогерентного приема сигнально-кодовых конструкций актуальна при создании помехоустойчивых систем связи, для которых процедуры оценивания начальных фаз радиосигналов с использованием устройств фазовой подстройки частоты характеризуются сложностью исполнения и низкой точностью, например, для передачи информации по нестационарным каналам, для систем с псевдослучайной перестройкой рабочей частоты и др. [1].

Известный метод решения данной задачи основан на каскадной схеме кодирования с использованием алфавита ортогональных сигналов используется внешний блоковый помехоустойчивый код и внутренний

1

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2012

ансамбль ортогональных сигналов. Как правило, в качестве внешних кодов используются коды Рида-Соломона в недвоичных полях, на вход соответствующего устройства приема поступают «жесткие» (двухуровневые) решения с выхода схемы обработки сигналов из ансамбля ортогональных сигналов [1]. Примером является система связи JTIDS (Joint Tactical Information Distribution System) с псевдослучайной перестройкой рабочей частоты, основу которой составляет внешний код Рида-Соломона над полем $GF(2^5)$ с использованием ансамбля квазиортогональных сигналов объемом 2^5 .

В статье рассматривается схема, использующая в качестве внешнего кода блоковые турбо-коды [2,3]. Данные обеспечивают коды достижение практически предельных вероятностно-энергетических характеристик при умеренной сложности их исполнения средствами цифровой вычислительной техники. Подобная схема исследовалась в работе [4], в которой показана эффективность данной сигнально-кодовой конструкции для решения рассматриваемой задачи. В настоящей статье приведено описание нового алгоритма некогерентного приема данной конструкции, приведены результаты его моделирования и оценки энергетического выигрыша по отношению к исходному алгоритму [4].

Постановка задачи

Рассматривается канал передачи радиосигналов без памяти, начальная фаза φ радиосигналов полагается случайной величиной с равномерным законом распределения в пределах [0,2 π]. В канале присутствует белый аддитивный гауссовский шум с односторонней спектральной плотностью N_0 . Используются радиосигналы с двоичной фазовой модуляцией, длительность элементарных сигналов T.

На рис.1 приведена блок-схема формирования исследуемой сигнально-кодовой конструкции.

2

Рис.1 Блок-схема формирования сигнально-кодовой конструкции.

В качестве внешнего кода используется блоковый турбо-код. Кодовые слова блоковых турбо-кодов формируются на основе двух двоичных блоковых кодов C_1 (n_1, k_1) и C_2 (n_2, k_2) и эквивалентны двумерной матрице размером $n_1 \times n_2$. Строки матрицы - кодовые слова кода C_1 , столбцы матрицы - кодовые слова кода C_2 [2]. Здесь n, k - длительность кодовых слов и размерность блокового кода. Длительность кодовых слов турбо-кода равна $n = n_1 \cdot n_2$, размерность $k = k_1 \cdot k_2$, кодовая скорость R = k/n. Если составляющие блоковые коды систематические, то информационные символы кодапроизведения образуют прямоугольную матрицу размером $k_1 \times k_2$ в составе двумерной матрицы кодовых слов.

С выхода перемежителя П объемом *n* последовательность кодовых символов разбивается на $N = \frac{n}{m}$ последовательностей длительностью *m*, поступающих на вход устройства формирования ортогональных сигналов, в качестве которых используется ансамбль функций Уолша объемом 2^m .

Пусть $\vec{Y}_{c,j}(\varphi) = (y_{lc,j}; 0 \le l < 2^m), \quad \vec{Y}_{s,j}(\varphi) = (y_{ls,j}; 0 \le l < 2^m)$ - прямая и квадратурная дискретные реализации с выхода демодулятора

$$y_{lc,j} = \frac{AT}{2} \cdot \cos(\varphi) \cdot h_{jl} + n_c, \qquad (1)$$

$$y_{ls,j} = \frac{AT}{2} \cdot \sin(\varphi) \cdot h_{jl} + n_s.$$
⁽²⁾

Здесь h_{jl} - символы (±1) переданной функции Уолша с номером j($0 \le j < N, 0 \le l < 2^m$), A - амплитуда радиосигналов на входе приемного устройства, n_c , n_s - помеховые составляющие, статистически независимые, имеющие гауссовский закон распределения с нулевыми средними и с дисперсиями $\sigma_0^2 = \sigma_{n_c}^2 = \sigma_{n_s}^2 = \frac{N_0 T}{4}$.

Разработка вычислительной процедуры обработки реализаций $\vec{Y}_{c,j}(\varphi)$, $\vec{Y}_{s,j}(\varphi)$ при некогерентном приеме сигналов составляет суть задачи.

Алгоритмы некогерентного приема

Процедура обработки реализаций $\vec{Y}_{c,j}(\phi)$, $\vec{Y}_{s,j}(\phi)$ при некогерентном приеме сигналов состоит из двух этапов [4].

На первом этапе вычисляются "мягкие" решения $\lambda_{l,j} = \ln \left(\frac{\Pr(h_l = 1 | \vec{Y}_{c,j}, \vec{Y}_{s,j})}{\Pr(h_l = -1 | \vec{Y}_{c,j}, \vec{Y}_{s,j})} \right) \quad для декодера блокового турбо-кода.$

Апостериорные вероятности $\Pr(h_l | \vec{Y}_{c,j}, \vec{Y}_{s,j})$ вычисляются по правилу

$$\Pr\{h_{l} = \xi | \vec{Y}_{c,j}, \vec{Y}_{s,j}\} = \sum_{\vec{h}} \delta(h_{l} - \xi) \Pr\{\vec{h} | \vec{Y}_{c,j}, \vec{Y}_{s,j}\}$$
(3)

Здесь $\delta(x)$ - символ Кронекера; $\xi = \pm 1$. Обозначение $\Pr\{\vec{h} | \vec{Y}_{c,j}, \vec{Y}_{s,j}\}$ соответствует усредненной по φ условной вероятности функции Уолша \vec{h} длительностью $2^m \Pr\{\vec{h} | \vec{Y}_{c,j}, \vec{Y}_{s,j}\} = \frac{1}{2\pi} \int_{0}^{2\pi} \Pr(\vec{h} | \vec{Y}_{c,j}(\varphi), \vec{Y}_{s,j}(\varphi)) d\varphi$.

Для вероятности $\Pr(\vec{h} | \vec{Y}_{c,j}, \vec{Y}_{s,j})$ формула Байеса имеет вид $\Pr(\vec{h} | \vec{Y}_{c,j}, \vec{Y}_{s,j}, \vec{Y}_{s,j}) = \frac{\Pr(\vec{h}) p(\vec{Y}_{c,j}, \vec{Y}_{s,j} | \vec{h})}{p(\vec{Y}_{c,j}, \vec{Y}_{s,j})}, \ p(\vec{Y}_{c,j}, \vec{Y}_{s,j}) = \sum_{\vec{h}} p(\vec{Y}_{c,j}, \vec{Y}_{s,j} | \vec{h}) \cdot \Pr(\vec{h}).$

Для функции правдоподобия $p(\vec{Y}_{c,j}, \vec{Y}_{s,j} | \vec{h})$ после усреднения по φ получаем результирующее соотношение

$$p(\vec{Y}_{c,j}, \vec{Y}_{s,j} | \vec{h}) = R \cdot I_0 \left(\frac{AT}{2\sigma_0^2} \cdot l(\vec{h}) \right), \ l^2(\vec{h}) = R_I^2(\vec{h}) + R_Q^2(\vec{h}), \tag{4}$$

здесь $I_0(x)$ - функция Бесселя 0-го порядка, *R* - постоянный множитель;

$$R_{I}(\vec{h}) = \sum_{l=0}^{2^{m}-1} y_{lc,j} \cdot h_{l} ; R_{Q}(\vec{h}) = \sum_{l=0}^{2^{m}-1} y_{ls,j} \cdot h_{l} .$$

Таким образом, процедура оценки апостериорных вероятностей $\Pr(h_l = \xi | \vec{Y}_{c,j}, \vec{Y}_{s,j})$ заключается в вычислении корреляций $R_I(\vec{h}), R_Q(\vec{h})$, их нелинейном преобразовании в соответствии с (4) и суммировании (3).

Вычисление $R_I(\vec{h}), R_Q(\vec{h})$ и суммы (3) может быть осуществлено при помощи алгоритма быстрого преобразования Уолша размерностью 2^k с базовыми операциями "сложение-вычитание-пересылки", что повышает производительность по отношению к прямому вычислению в $\frac{2^k}{k}$ раз [4,5].

Более простой метод вычисления мягких решений $\lambda_{l,j}$, не требующий знания энергетических параметров канала *A* и σ_0^2 , основан на применении приближенного соотношения [3]

$$\lambda_{l,j} \cong \max_{\vec{h}_m:h_{ml}=0} (l_j(\vec{h}_m)) - \max_{\vec{h}_m:h_{ml}=1} (l_j(\vec{h}_m)).$$
(5)

При вычислении соотношения (5) можно применить модифицированный алгоритм быстрого преобразования Уолша размерностью 2^{*k*} с базовыми операциями "сравнение-пересылки" [6]. На рис.2 приведена схема основного элемента модифицированного алгоритма быстрого преобразования Уолша.

В результате выполнении первого этапа вычисляются "мягкие" решения $\lambda_{l,j}$, $0 \le l < m$, $0 \le j < N$, образующие двумерную матрицу $\vec{\lambda} = (\lambda_{ij}; 0 \le i < n_1; 0 \le j < n_2)$, соответствующую двумерным кодовым словам блокового турбо-кода.

Рис.2. Схематическое изображение базового элемента модифицированного алгоритма быстрого преобразования Уолша с операциями "сравнение-пересылки".

На втором этапе реализуется алгоритм итеративного приема с использованием "мягких" решений $\vec{\lambda}$. Пусть $\vec{A} = (a_{ij}; 0 \le i < k_1; 0 \le j < k_2)$ информационные символы, образующие матрицу в двумерной матрице $\vec{B} = (b_{ij}; 0 \le i < n_1; 0 \le j > n_2)$ блокового турбо-кода; $L(\lambda_{ij} | b_{ij}) = \ln \left(\frac{p(\lambda_{ij} | b_{ij} = 0)}{p(\lambda_{ij} | b_{ij} = 1)} \right)$

- отношение правдоподобия условных плотностей вероятностей отсчетов λ_{ii} ;

$$L(b_{ij}) = \ln\left(\frac{\Pr(b_{ij}=0)}{\Pr(b_{ij}=1)}\right)$$
 - отношение априорных символьных вероятностей.

Алгоритм приема блоковых турбо-кодов является итеративным, итерация содержит два шага [3]. На первом шаге *m*-ой итерации вычисляются приращения отношений апостериорных вероятностей $L^{(1,m)}(b_{ij}|\vec{\lambda}_i^{(1)}, L^{(2,m)}(b_{ij}))$ для кодовых символов $b_{ij}, j = 0, 1, ..., n_1 - 1$ для *i*-го кодового слова $\vec{B}_i^{(1)}$ блокового кода C_1

$$L^{(1,m)}(b_{ij}) = L^{(1,m)} \Big(b_{ij} \Big| \vec{\lambda}_i^{(1)}, L^{(2,m)}(b_{ij}) \Big) - \Big(L(\lambda_{ij} \Big| b_{ij}) + L^{(2,m)}(b_{ij}) \Big).$$
(6)

Здесь
$$L^{(1,m)}(b_{ij}|\vec{\lambda}_i^{(1)}, L^{(2,m)}(b_{ij})) = \ln\left(\frac{\Pr(b_{ij}=0|\vec{\lambda}_i^{(1)}, L^{(2,m)}(b_{ij}))}{\Pr(b_{ij}=1|\vec{\lambda}_i^{(1)}, L^{(2,m)}(b_{ij}))}\right); \quad \vec{\lambda}_i^{(1)}$$

реализация в составе $\vec{\lambda}$, соответствующая кодовому слову $\vec{B}_i^{(1)}$. Для первой итерации (m = 1) верно условие $L^{(2,1)}(b_{i,j}) = L(b_{i,j})$.

На втором шаге *m*-ой итерации подобные вычисления производятся для вычисления приращения апостериорных символьных вероятностей кодовых слов $\vec{B}_i^{(2)}$ кода C_2

$$L^{(2,m)}(b_{ij}) = L^{(2,m)}\left(b_{ij} \middle| \vec{\lambda}_j^{(2)}, L^{(1,m)}(b_{ij}) \right) - \left(L(\lambda_{ij} \middle| b_{ij}) + L^{(1,m)}(b_{ij}) \right).$$
(7)

Здесь $\vec{\lambda}_i^{(2)}$ - реализация в составе $\vec{\lambda}$, соответствующая кодовому слову $\vec{B}_i^{(2)}$. Величины $L^{(2,m)}(b_{ij})$ используются в качестве априорной информации для первого шага последующей (m+1)-ой итерации, то есть $L^{(1,m+1)}(b_{ij}) = L^{(2,m)}(b_{ij})$.

На последней итерации принимаются решения относительно символов b_{ij} : при условии $L^{(2,m)}(b_{ij} | \vec{\lambda}_i^{(2)}, L^{(1,m)}(b_{ij})) > 0$ полагается $b_{ij} = 0$, иначе $b_{ij} = 1$.

При вычислении величин $L^{(1,m)}(b_{ij}|\vec{\lambda}_i^{(1)}, L^{(2,m)}(b_{ij})),$ $L^{(2,m)}(b_{ij}|\vec{\lambda}_i^{(2)}, L^{(1,m)}(b_{ij}))$ применяется алгоритм подоптимальной оценки [3]

$$L(b_{ij} | \vec{\lambda}_i, L(b_{ij})) = \ln \left(\frac{\max_{\vec{B}_m : b_{im} = 0} (p(\vec{\lambda}_i | L(b_{ij}), \vec{B}_m))}{\max_{\vec{B}_m : b_{im} = 1} (p(\vec{\lambda}_i | L(b_{ij}), \vec{B}_m))} \right).$$
(8)

Процедура поиска кодовых векторов \vec{B}_m , определяющих максимумы делимого и делителя в (8), основана на использовании алгоритма Чейза [3]. Алгоритм Чейза не требует оценки энергетических параметров канала передачи.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2012

Модификация изложенного алгоритма некогерентного приема (5)-(8) определяет дополнительный энергетический выигрыш. Суть модификации алгоритма - применение итеративной обработки, производимой в сочетании двух приведенных этапов.

Блок-схема результирующего алгоритма приведена на рис.3. Алгоритм включает выполнение двух этапов.

Рис.3. Блок-схема результирующего алгоритма некогерентного приема (РУ - решающее устройство).

На первом этапе вычисляются мягкие решения, используя вычисленные значения $l_j(\vec{h}_m, L(\vec{h}_m))$ с использованием входных реализаций $\vec{Y}_{c,j}(\varphi)$, $\vec{Y}_{s,j}(\varphi)$ и априорной информации $L(\vec{B}_m)$ относительно функций Уолша $L(\vec{h}_m)$, поступающей с выхода блока обработки внешнего кода,

$$\lambda_{l,j} \cong \max_{\vec{h}_m:h_{ml}=0} \left(l_j(\vec{h}_m, L(\vec{h}_m)) - \max_{\vec{h}_m:h_{ml}=1} \left(l_j(\vec{h}_m, L(\vec{h}_m)) \right).$$
(9)

На устройство обработки внешнего блокового турбо-кода поступают величины $\hat{\lambda}_{l,j} = \lambda_{l,j} - L(\vec{h}_{jm})$ с выхода перемежителя П.

На втором этапе устройство обработки внешнего блокового турбо-кода вычисляет приращения апостериорных символьных вероятностей кодовых слов

турбо-кода $L(\vec{B})$, которые после перемежения поступают на устройство обработки внутреннего кода (функций Уолша).

Решающим устройством после выполнения задаваемого количества итераций принимается решение относительно кодовых символов b_{ij} , правило решения совпадает с приведенным правилом для блокового турбо-кода на втором этапе алгоритма некогерентного приема.

Результаты моделирования

На рис. 4 приведены вероятности ошибки на бит P_{δ} для сигнальнокодовой конструкции на основе блокового турбо-кода (1024,441) и ансамбля функций Уолша объемом 64. По оси абсцисс отложены значения сигнал/помеха $\frac{E_{\delta}}{N_0}$, здесь E_{δ} - энергия на бит. Кривая 1 соответствует применению исходного алгоритма некогерентного приема, кривая 2 соответствует применению модифицированного алгоритма итеративного некогерентного приема (5 итераций). Данные кривые получены путем компьютерного моделирования приведенного модифицированного алгоритма некогерентного приема. Энергетический выигрыш кривой 2 по отношению к кривой 1 достигает 0.3 дБ.

Рис. 4. Вероятности ошибки для сигнально-кодовой конструкции на основе блокового турбо-кода (1024,441) и ансамбля функций Уолша объемом 64: 1 -

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N7, 2012

применение исходного алгоритма некогерентного приема; 2 - применение модифицированного алгоритма некогерентного приема.

На рис. 5 приведены вероятности ошибки на бит P_{δ} для ряда рассматриваемых сигнально-кодовых конструкции на основе блоковых турбо-кода и кодов Рида-Соломона [3]. Кривая 1 и кривая 2 соответствуют сигнально-кодовым конструкциям на основе кода Рида-Соломона (63,47) над полем $GF(2^6)$ и турбо-кода (4096,2601) и ансамбля функций Уолша объемом 64. Кодовые скорости кода Рида-Соломона и блокового турбо-кода близки (≈ 0.7). Данные кривые получены путем компьютерного моделирования приведенного модифицированного итеративного алгоритма некогерентного приема (5 итераций). Видно, что энергетический выигрыш кривой 2 по отношению к кривой 1 для значения $P_{\delta} = 10^{-5}$ достигает 1.75 дБ. При уменьшении вероятности P_{δ} значения энергетического выигрыша увеличиваются.

Рис. 5. Вероятностные кривые для сигнально-кодовых конструкции на основе блоковых турбо-кода и кодов Рида-Соломона: 1 - на основе кода Рида-Соломона (63,47) над полем $GF(2^6)$ и ансамбля функций Уолша объемом 64; 2 - на основе турбо-кода (4096,2601) и ансамбля функций Уолша объемом 64; 3 - на основе кода Рида-Соломона (63,31) над полем $GF(2^6)$ и ансамбля функций

Уолша объемом 64; 4 - на основе турбо-кода (1024,441) и ансамбля функций Уолша объемом 64.

Кривые 3 и 4 на рис.5 соответствуют сигнально-кодовым конструкциям на основе кода Рида-Соломона (63,31) над полем $GF(2^6)$ и турбо-кода (1024,441) и ансамбля функций Уолша объемом 64. Кодовые скорости кода Рида-Соломона и турбо-кода близки (≈ 0.5). Видно, что энергетический выигрыш кривой 2 по отношению к кривой 1 для $P_6 = 10^{-5}$ достигает 1.6 дБ.

Рис. 6. Вероятностные кривые для сигнально-кодовой конструкции на основе турбо-кода (1024,441) и ансамбля функций Уолша объемом 64: 1 - исходный алгоритм некогерентного приема; 2 - модифицированный алгоритм некогерентного приема.

На рис. 6 приведены вероятности P_{δ} для сигнально-кодовой конструкции на основе турбо-кода (1024,441) и ансамбля функций Уолша объемом 64. Кривые 1 и 2 получены путем компьютерного моделирования исходного и модифицированного алгоритмов некогерентного приема (5 итераций). Видно, что при применении модифицированного алгоритма приема энергетический выигрыш по отношению к исходному алгоритму некогерентного приема достигает 0.3 дБ.

Заключение

Приведено описание нового алгоритма итеративного некогерентного приема сигнально-кодовых конструкций на основе блоковых турбо-кодов и ансамблей ортогональных сигналов, соответствующих функциям Уолша. Путем компьютерного моделирования данного алгоритма для ряда конструкций показано наличие энергетического выигрыша по отношению к подобной сигнально-кодовым конструкциям на основе кодов Рида-Соломона и по отношению к известному алгоритму некогерентного приема.

Литература

1. Кларк Дж. мл., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи. Перевод с англ. М.: Радио и связь. 1987. 392 с.

2. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. Перевод с англ. М.: Техносфера. 2005. 320 с.

3. Pyndiah R.M. Near-optimum decoding of product-codes: block turbo-codes. //IEEE Transactions on Communication. 1998. V.46. N8. P.1003-1010.

4. Назаров Л.Е Итеративный некогерентный прием турбо-кодов на основе двоичных блоковых кодов. // Радиотехника и электроника. 2005. Т.50. №3 Стр.315-320.

5. Ахмед Н., Рао К.Р. Ортогональные преобразования при цифровой обработке сигналов. М.:Связь. 1980. 248 с.

6. Назаров Л.Е. Алгоритмы посимвольного приема сигналов.// Информационные технологии. 2010. №2. Стр.53-55.

12