"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 4, 2017

contents             full textpdf   

Analyzing of blind pulse signal extraction algorithms at the background of impulse noise

 

A. E. Manokhin

Ural Federal University, 32 Mira street, 620002 Yekaterinburg, Russia

 

The paper is received on February 19, 2017,  after correction - on April 18, 2017

 

Abstract. An efficiency of two blind signal extraction algorithms (gradient and fixed point) based on the maximization of absolute kurtosis is analyzed in the work. Algorithms allow to extract a pulse signal on the background of impulse noise. The algorithms’ convergence at null and nonzero initial conditions is proved. A lemma and two theorems which allow to prove blind allocation signal and to determine the number of decisions regarding the extracting signal are formulated. It is determined that the fixed point algorithm based on maximizing the absolute kurtosis is more efficient. It allows extracting the pulse desired signal having the signal-to–noise ratio 30 dB greater than the gradient algorithm with the same objective function.

Key words: blind signal extraction, fixed point algorithm, kurtosis, Hessian, the rate of convergence.

References

1. A.Cichocki and S.Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, 2002.

2. A. Cichocki, R. Thawonmas, and S. Amari, “Sequential blind signal extraction in order specified by stochastic properties”. Electron. Lett., vol. 33, ¹ 1, pp. 64–65, Jan. 1997.

3. A.E.Manokhin.  A compensation method of blind additive stationary non-gaussian disturbance suppression .   Zhurnal Radioelektroniki - Journal of Radio Electronics,   2017, No. 2. Available at http://jre.cplire.ru/jre/feb17/4/text.pdf. (In Russian).

4. A.E.Manokhin.  Using blind source separation algorithm by minimizing mutual information in reference channels of multichannel adaptive cancelling disturbances.   Zhurnal Radioelektroniki - Journal of Radio Electronics,   2016, No. 3. Available at http://jre.cplire.ru/jre/mar16/3/text.pdf. (In Russian).

5. Hyvarinen A., Karhunen J. and Oja E. Independent component analysis. New York: J. Wiley, 2001.

6. S.C. Douglas and S.Y. Kung. Kuicnet algorithms for blind deconvolution. In Proc. IEEE Workshop on Neural Networks for Signal Processing, pp. 3–12, Cambridge, UK, August 1998.

7. I.G. Aramanovich and other, editors: L.A. Lucernik, A.R. Yanpolskii. Matematicheskii analiz : differencirovanie i integrirovanie  [Math analysis : a differentiation and an integration].  Moscow, Fizmatgiz Publ, 1961.  351 p. (In Russian).

8. Mitsel A.A., A.A. Shelestov. Metody optimizacii  [Optimization methods]. Tomsk : TUSUR Publ, 2004. – 255 p. (In Russian)

 

For citation:

A. E. Manokhin. Analyzing of blind pulse signal extraction algorithms at the background of impulse noise. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 4. Available at http://jre.cplire.ru/jre/apr17/9/text.pdf. (In Russian)