"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 4, 2019

contents of issue      DOI  10.30898/1684-1719.2019.4.1     full text in Russian (pdf)  

UDC 537.874; 537.624

INVESTIGATION OF STRUCTURE PROPERTIES OF GRAPHENE-CONTAINING SHUNGITE BY THE DATA OF X-RAY SPECTRUM ANALYSIS

 

I. V. Antonets 1, E. A. Golubev 2, V. G. Shavrov 3, V. I. Shcheglov 3

Syktyvkar State University of Sorokin, Oktyabrskiy prosp. 55, Syktyvkar 167001, Russia

2 Geology Institute Komy SC UrD RAS, Pervomaiskaya 54, Syktyvkar 167982, Russia

Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow 125009, Russia

 

The paper is received on March 26, 2019

 

Abstract. The possibility of structure properties investigation of graphene-contained shungite by using the element-cards which is founded by x-ray-spectrum analysis is investigated. For the founding of data about carbon space distribution it is proposed to use the blacking profile of card received along one straight line. It is found the profiles of carbon and quarts distribution where quarts is combination of silicon and oxygen. It is established the mutual addition of carbon and quarts profiles which has independence from frequency. It is executed the harmonic analysis of carbon distribution along the coordinate which length is equal to 30 micrometers. On the basis of obtained spectrum it is found two character dimensions of carbon and quarts regional congestions by both ingredients are equal to 9,2 micrometers and 2,1-2,7 micrometers. For more precise determination of regions it is proposed to use the relative values of amplitudes by all harmonics each separately. It is established that the distribution of regions by dimensions has probable character. It is found the sum probabilities of carbon and quarts. It is shown that the main role in carbon and quarts distribution plays the harmonics which correspond to region dimension equal to 15,0, 7,5 and 5,0 micrometers. For the interpretation of obtained results it is proposed the model of periodical space structure of shungite which is opposite to earlier proposed model «sand with liquid». It is made the analysis of spatial distribution of carbon and quarts in unique elementary cell of proposed structure. It is shown that by volume distribution the carbon forms 17,6% from complete of investigated sample volume. This value is in good correspondence  with specific concentration of carbon which is founded by coulomb-metric titration method which is equal to 17%. On the basis of obtained results it is proposed the recommendations fore more successful of harmonic analysis method of x-ray spectroscopy cards to the task of spatial structure of shungite investigation.

Key words: carbon, shungite, electrical conductivity.

References

1. Lutsev L.V., Nikolaichuk G.A., Petrov V.V., Yakovlev S.V. Mnogotselevye radiopogloshchayushcsie materiali na osnove magnitnih nanostruktur: poluchenie, svoystva, primenenie. [Multipurpose radio-absorbing materials on the basis of magnetic nanostructure: obtaining, properties, application]. Nano-tehnika – Nano-engineering. 2008. No.10. P.37 (In Russian).

2. Kazantseva N.E., Ryvkina N.G., Chmutin I.A. Promising materials for microwave absorbers. Journal of Communications Technology and Electronics. 2003. Vol.48. No.2. P.173.

3. Ostrovsky O.S., Odarenko E.N., Shmatko A.A. Protective screens and absorbers of electromagnetic waves. Fizicheskaya injeneriya poverhnosti - Physical engineering of surface. 2003. Vol.1. No.2. P.161 (In Russian).

4. Antonov A.S., Panina L.V., Sarichev A.K.  High-frequency magnetic permeability of composite materials containing the carbon-iron. Technical Physics. The Russian Journal of Applied Physics. 1989. Vol.59. No.6. P.88 (In Russian).

5. Vinogradov A. Elektrodinamika kompozitsionnykh materialov [Electrodynamics of composite material]. Moscow, URSS Publ., 2001 (In Russian).

6. Vendik I.B., Vendik O.G. Meta-materials ant its application in microwave engineering. Technical Physics. The Russian Journal of Applied Physics. 2013. Vol.83. No.1. P.3 (In Russian).

7. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Composite medium with simultaneously negative permeability and permittivity.  Phys. Rev. Lett. 2000. Vol.84. No.18. P.4184. 

8. Pendry J.B. Negative refraction makes a perfect lens.  Phys. Rev. Lett. 2000. Vol.85. No.18. P.3966. 

9. Moshnikov I.A., Kovalevsky V.V., Lazareva T.N., Petrov A.V. The shungite rocks employment in creation of radio-screening composite materials. Materials of conference «Geodynamics, magmatizm, sedimentogenes and minerageniya of north-west of Russia». Petrozavodsk, Geological institute of KarSC of Russian Academy of Sciences. 2007. P.272. (In Russian). 

10. Linkov L.M., Makhmud M.Sh., Kryshtopova E.A. The electromagnetic radiation screens on the basis of powder-like shungite.  Bulletin of Polotsk State university. Series C. Fundamental sciences. Novopolotsk, Polotsk State University. 2012. No.4. P.103 (In Russian). 

11. Linkov L.M., Borbotko T.V., Kryshtopova E.A. The radio-absorption properties of nickel-containing powdery shungite. Technical Physics Letters. 2009. Vol.35. No.9. P.44 (In Russian).

12. Borisov P.A. Karelskie shungite. [Karelian shungites]. Petrozavodsk, Karelia Publ., 1956 (In Russian).

13. Philippov M.M. Shungiteonosnie porodi onezhskoi structury. [Shungite-containing rocks of Onega structure]. Petrozavodsk, Karelian Scentific Center of Russian Academy of Sciences. 2002. (In Russian).

14. Sokolov V.A., Kalinin Yu.K., Gukkiev E.F. Shungiti – novoe uglerodistoe syrye [Shungites – new carbon raw material]. Petrozavodsk, Karelia Publ., 1984. 176 p. (In Russian). 

15. Philippov M.M., Medvedev P.P., Romashkin A.E. O prirode shungitov Yuzhnoy Karelii. [About the nature of South Karelia shungites].  Litologia i poleznie iskopaemie – Lithology and useful minerals. 1998. No.3. P.323. (In Russian).

16. Melezhik V.A., Filippov M.M., Romashkin A.E. A giant paleoproterozoic deposit of shungite in NW Russia.  Ore Geology Reviews. 2004. Vol.24. P.135.

17. Kovalevsky V.V. Struktura uglerodnogo veschestva i genesis shungitovykh porod. Structure of carbon substance and genetics of shungite rocks. Doctors thesis. Petrozavodck. 2007.  (In Russian)

18. Kovalevsky V.V. Structure of shungite carbon. Journal of inorganic chemistry. 1994. No.39. P.28.

19. Sheka E.F., Golubev E.A. Technical graphene (reduced graphene oxide) and its natural analog (shungite).  Technical Physics. The Russian Journal of Applied Physics. 2016. Vol.61. No.7. P.1032.

20. Golubev E.A., Ulyashev V.V., Veligshanin A.A. Porosity and structure parameters of Karelian shungite by data of small-angle dispersion of synchrotron radiation and microscopy. Kristallografia – Crystallography. 2016. Vol.61. No.1. P.74 (In Russian). 

21. Golubev E.A., Antonets I.V., Shcheglov V.I. Model’nye predstavleniya mikrostruktury, elektroprovodyaschikh i SVCh svoyistv shungita [Model presentation of microstructure, electro-conductivity and microwave properties of shungites]. Syktyvkar. Syktyvkar State University Publ. 2017 (In Russian) 

22. Rodionov V.V. Mehanizmi vzaimodeystviya SVCh izluchenia s nanostrukturirovannimi uglerodsodershashchimi materialami. [The mechanisms of interaction of VHF-radiation with nanostructused carbon-contained materials].  PhD thesis. Kursk. 2014. (In Russian).  

23. Golovanov O.A., Makeeva G.S., Rinkevich A.B. Interaction of terahertz electromagnetic waves with periodic gratings of graphene micro- and nanoribbons.  Technical Physics. The Russian Journal of Applied Physics. 2016. Vol.61. No.2. P.274.

24. Makeeva G.S., Golovanov O.A. Mathematical simulation of electron-guided designs of thera-cycle frequency range on the basis of graphene and carbon nano-tubes. Penza. Penza State Universuty Publ., 2018 (In Russian)

25. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of conductivity of graphen-containing shungite by wave-guide method. Book of papers of International Symposium «Perspective materials and technologies». Vitebsk. Belarus. 2017. P.6. (In Russian)

26. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of graphene-contained shungite in microwave region. Book of papers of XXV International conference «Electromagnetic field and materials». Moscow, NIU MEI Publ., 2017. P.135 (In Russian)

27. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of graphene-contained shungite in microwave region. Journ. Tech. Phys. Letters. 2018. Vol.44. No.9. P.12.  

28. Golubev E.A., Antonets I.V., Shcheglov V.I. Static and dynamic conductivity of nanostructured carbonaceous shungite geomaterials. Materials Chemistry and Physics. 2019. Vol. 226. No.3. P.195. 

29. Antonets I.V., Kotov L.N., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of amorphous nanogranular films in the microwave frequency range. Technical Physics Letters. 2014. Vol.40. No.7. P.584.

30. Antonets I.V., Kotov L.N., Kirpicheva O.A., Golubev E.A., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. Static and dynamic conductivity of amorphous nanogranulated composites «metal-dielectric». Journal of Communications Technology and Electronics. 2015. Vol.60. No.8. P.755.

31. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Specific features of static and dynamic conduction of a composite film containing metal nanogranules in a dielectric matrix.  Journal of Communications Technology and Electronics. 2014. Vol.59. No.9. P.920.  

32. Antonets I.V., Vlasov V.S., Kotov L.N., Kirpicheva O.A., Golubev E.A., Kalinin Yu.E., Sitnikov A.V., Shavrov V.G., Shcheglov V.I. Static and dynamic conductivity of nanogranulated films «metal-dielectric». Zhurnal Radioelectroniki – Journal of Radio Electronics. 2016. No.5. Available at: http://jre.cplire.ru/jre/may16/10/text.pdf (In Russian).

33. Antonets I.V., Kotov L.N., Golubev E.A., Shavrov V.G., Shcheglov V.I. Dynamic conductivity of nanogranulated films «metal-dielectric» on the microwave frequencies.  Zhurnal Radioelectroniki – Journal of Radio Electronics. 2018. No.5. Available at: http://jre.cplire.ru/jre/may18/7/text.pdf (In Russian).

34. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Influence of shungite structure parameters on its electro-conductivity properties.  Zhurnal Radioelectroniki – Journal of Radio Electronics. 2017. No.5. Available at:http://jre.cplire.ru/jre/may17/11/text.pdf (In Russian)

35. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The model presentation of microstructure, conductivity and microwave properties of graphene-containing shungite.  Zhurnal Radioelectroniki – Journal of Radio Electronics. 2017. No.9. Available at: http://jre.cplire.ru/jre/sep17/8/text.pdf (In Russian)

36. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. The model presentation of microstructure of shungite in connection with  its conductivity properties. Book of papers XXV International conference «Electromagnetic field and materials». Moscow, NIU MEI Publ., 2017. P.148 (In Russian)

37. Joseph I. Goldstein, Harvey Yakowitz (editors). Practical Scanning Electron Microscopy. Springer-Verlag US 1975, Spriger, Boston, MA

DOI https://doi.org/10.1007/978-1-4613-4422-3

Print ISBN978-1-4613-4424-7, Online ISBN978-1-4613-4422-3.

 38. Yushkin N.P. Globular over-molecular structure of shungites: data of unfolded tunnel microscopy. Doklady – Physics. 1994. Vol.337. No.6. P.800 (In Russian).

39. Golubev E.A. Electro-physical properties and structure peculiarities of shungite (natural nano-structured carbon).  Physics of Solid State. 2013. Vol.55. No.5. P.995.  

40. Golubev E.A.  Nadmolekulyarnye struktury prirodnykh rentgenoamorfnykh veschestv [Under-molecular structures of natural x-ray amorphous substances]. Ekaterinburg. UroRAN Publ., 2006 (In Russian)

41. Golubev E.A., Kovaleva O.A., Yushkin N.P. Observations and morphological analysis of super-molecular structure of natural bitumens by atomic force microscopy.  Fuel. 2008. Vol.87. No.1. P.32.

42. Golubev E.A. Globular structure of high-antraxolytes by the data of unfolded probe-microscopy. Doklady – Physics.  2009. Vol.425. No.4. P.519 (In Russian)

43. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure and electrical properties of graphene-containing shungite by data of electro-force spectroscopy. Part 1. Concentration of carbon. Zhurnal Radio electroniki – Journal of Radio Electronics. 2018. No.8. Available at: http://jre.cplire.ru/jre/aug18/5/text.pdf (In Russian).

44. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure and electrical properties of graphene-containing shungite by data of electro-force spectroscopy. Part 2. Discretization of structure. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2018. No.8. Available at: http://jre.cplire.ru/jre/aug18/6/text.pdf (In Russian).

45. Antonets I.V., Golubev E.A., Shavrov V.G., Shcheglov V.I. Investigation of structure and electrical properties of graphene-containing shungite by data of electro-force spectroscopy. Part 3. Integral conductivity.  Zhurnal Radioelectroniki – Journal of Radio Electronics. 2018. No.9. Available at: http://jre.cplire.ru/jre/sep18/1/text.pdf(In Russian).

46. Harkevich A.A. Osnovy radiotekhniki [Foundations of Radio Engineering]. Moscow, Fizmatlit publ., 2007 (In Russian).

47. Gonorovsky I.S.  Radiotekhnicheskie tsepiiI signaly [ Radio engineering circuits and signals]. Moscow, Sovetskoe Radio Publ., 1964 (In Russian).  

48. Gonorovsky I.S. Radiotekhnicheskie tsepiiI signaly [Radio Engineering Circuits and Signals]. Moscow, Radio I Svyaz Publ., 1986 (In Russian).   

49. Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. New York. McGraw-Hill Book Company. 1968.

50. Romanovsky P.I. Ryady Furye. Teoriya polya. Analiticheskie i spetsialnye funktsii. Preobrazovanie Laplasa. [Fourier rows. Theory of field. Analytical and special functions. Laplace transformation]. Moscow, Nauka Publ., 1964. (In Russian)

51. Il’yin V.A., Poznyak E.G. Osnovy matematicheskogo analiza [Foundations of mathematical analysis]. Moscow, Nauka Publ., 1965 (In Russian). 

52. Fihtengolts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya [Course of Differential and Integral Calculation]. Vol.1-3. Moscow-Leningrad, Gostechizdat Publ., 1951 (In Russian).

53. Ventsel’ E.S. Teoriya verroyatnostey [Probability theory]. Moscow, Vysshaya Shkola Publ., 1999, 576 p. (In Russian)

 

For citation:
I. V. Antonets, E. A. Golubev, V. G. Shavrov, V. I. Shcheglov. Investigation of structure and electrical properties of graphene-containing shungite by the data of X-ray spectrum analysis. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 4. Available at http://jre.cplire.ru/jre/apr19/1/text.pdf

DOI  10.30898/1684-1719.2019.4.1