Zhurnal Radioelektroniki - Journal of Radio Electronics. ISSN 1684-1719. 2020. No. 4
Contents

Full text in English (pdf)
Russian page

 

DOI https:/doi.org/10.30898/1684-1719.2020.4.3
UDC 535.13: 535.326: 535.36: 621.37

 

Irregular liquid crystal waveguide structures: analysis of quasi-stationary fluctuations, power loss and statistical properties of irregularities

 

A. A. Egorov 1,2, A. S. Ayriyan 3,4, E. A. Ayrjan 3

1 Moscow A.S.Popov Scientific-Technical Society of Radio Engineering, Electronics and Communications, Sretenskii blv., 2, Moscow 101000, Russia

2 A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov str., 38, Moscow 119991, Russia

3 Joint Institute for Nuclear Research, Joliot-Curie str. 6, Dubna 141980, Russia

4 A.I. Alikhanyan National Science Laboratory, Alikhanian Brothers St., 2, Yerevan, 0036, Republic of Armenia

 

The paper is received on March 24, 2020 

 

Abstract. Irregular nematic liquid crystal waveguide structures were investigated by the numeric simulation and experimentally. The dependence of attenuation coefficient (optical losses) of the waveguide modes and the effective sizes (correlation radii) of quasi-stationary irregularities of the liquid-crystal layer on the linear polarization of the incident laser radiation and the presence of pulse-periodic electric field were experimentally observed and investigated. An estimate is made of the correlation radii of liquid-crystal waveguide quasi-stationary irregularities. The observed decrease in the attenuation coefficient of the waveguide modes and the effective sizes of irregularities in the liquid-crystal layer, when the external electric field is switched on, explained by the effect of the decrease in the fluctuations correlation radii of the local orientation of the molecules of the liquid crystal. Experimental spectral density function of the statistical quasi-stationary nematic liquid crystal irregularities was restored and relevant statistical parameters are given. The obtained results are undoubtedly important for further research of dynamic processes inside non stationary waveguide liquid crystal layers, both from the theoretical point of view for understanding kinetic processes in the liquid crystals, and with practical, -- in the organization and carrying out suitable experimental researches.

Key words: waveguide, planar lens, laser radiation, liquid crystal, director, fluctuations, irregularities, optofluidics, numerical simulation.

References

1.            Blinov L.M.  Elktro- i magnetooptika zhidkikh kristallov [Electro- and Magnetooptics of Liquid Crystals]. Moscow: Nauka, 1978. (In Russian)

2.            Khoo I.C. Liquid Crystals. 2nd Edition. NY: Wiley, 2007.

3.            Ayriyan A.A., Ayrjan E.A., Egorov A.A., Hadjichristov G.B., Marinov Y.G., Maslyanitsyn I.A., Petrov A.G.,  Pribis J., Popova L., Shigorin V.D., Strigazzi A., Torgova S.I. Some Features of Second Harmonic Generation in the Nematic Liquid Crystal 5CB in the Pulsed-Periodic Electric Field. Physics of Wave Phenomena. 2016. Vol. 24. No. 4. P. 259-267.

4.            Ayriyan A.A., Ayrjan E.A., Egorov A.A., Dencheva-Zarkova M., Hadjichristov G.B., Marinov Y.G., Maslyanitsyn I.A., Petrov A.G., Popova L., Shigorin V.D., Strigazzi A., Torgova S.I. Modeling of Static Electric Field Effect on Nematic Liquid Crystal Director Orientation in Side-Electrode Cell.  EPJ Web of Conferences. 2018, Vol. 173. 03002.

5.            Beeckman J., Yang T.-H., Nys I., George J.P., Lin T.-H.,  Neyts K. Multi-electrode tunable liquid crystal lenses with one lithography step. Optics Letters. 2018. Vol. 43. No. 2. P. 271-274.

6.            Egorov A.A., Shigorin V.D., Ayriyan A.S., Ayryan E.A. Study of the effect of pulsed-periodic electric field and linearly polarized laser radiation on the properties of liquid-crystal waveguide.  Physics of Wave Phenomena. 2018. Vol. 26. No. 2. P. 116-123.

7.            Egorov A.A. Study and analysis of light scattering loss in irregular integrated optical waveguides. Physics of Wave Phenomena. 2019. Vol. 27. No. 3. P. 217-228.

8.            Egorov A.A. Use of waveguide light scattering for precision measurements of the statistic parameters of irregularities of integrated optical waveguide materials.  Opt. Engineering. 2005. Vol. 44. No. 1. P. 014601-1–014601-10.

9.            Egorov A.A. Theoretical and numerical analysis of propagation and scattering of eigen- and non-eigen modes of an irregular integrated-optical waveguide. Quantum Electronics. 2012. Vol. 42. No.4. P.337-344.

10.       Egorov A.A. Correct investigation of the statistic irregularities of integrated optical waveguides with the use of the waveguide light scattering. Laser Physics Letters. 2004. Vol. 1. No. 8. P. 421-428.

11.       Egorov A.A. Numerical investigation of characteristics of laser radiation scattered in an integrated optical waveguide with three-dimensional inhomogeneity. Optics and Spectroscopy. 2012. Vol. 112. No. 2. P.280-290.

12.       Born M., Wolf E. Principles of optics. NY, Pergamon. 1986.

13.       Goodman J.W. Introduction to Fourier Optics. NY, McGraw-Hill. 1996.

14.       Sodha M.S., Ghatak A.K. Inhomogeneous optical waveguides. London, Plenum. 1977.

15.       Hunsperger R.G. Integrated Optics. Theory and Technology. Springer-Verlag, Berlin-Heidelberg. 1984.

16.       Marcuse D. Light transmission optics. NY. Van Nostrand Reinhold. 1972.

17.       Unger H.-G. Planar optical waveguides and fibres. Oxford, Clarendon. 1977.

18.       Snyder A.V., Love J.D. Optical waveguide theory. NY, Chapman and Hall. 1983.

19.       Ayryan E.A., Egorov A.A., Sevastianov L.A., Lovetskiy K.P., Sevastyanov A.L. Mathematical modeling of irregular integrated optical waveguides. Lecture Notes in Computer Science. 2012. Vol. 7125. P. 136-147.

20.       Falco A.Di., Kehr S.C., Leonhardt U. Luneburg lens in silicon photonics.  Optics express. 2011. Vol. 19. No. 6. P. 5156-5162.

21.       Yong M. Optics and Lasers. Including Fibers and Optical Waveguides. Springer. 2001.

22.       Liu J.-M. Photonic Devices. Cambridge University Press. 2005.

23.       Tsang L., Kong J.A., Ding K.-H., Ao C.O. Scattering of Electromagnetic Waves: Numerical Simulations. NY, Wiley. 2001.

24.       Ayriyan A.S., Ayrjan E.A., Egorov A.A., Maslyanitsyn I.A., Shigorin V.D. Numerical modeling of the static electric field effect on the director of the nematic liquid crystal director. Mathematical Models and Computer Simulations. 2018. Vol. 10. Issue 6. P. 714-720.

25.       Samarskii A.A. The theory of Difference Schemes. NY, Marcel Dekker. 2001.

 

For citation:

Egorov A.A., Ayriyan A.S., Ayrjan E.A. Irregular liquid crystal waveguide structures: analysis of quasi-stationary fluctuations, power loss and statistical properties of irregularities. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 4. Available at http://jre.cplire.ru/jre/apr20/3/text.pdf.  DOI: https://doi.org/10.30898/1684-1719.2020.4.3