Zhurnal Radioelektroniki - Journal of Radio Electronics. ISSN 1689-1719. 2020. No. 4
Contents

Full text in Russian (pdf)
Russian page

 

DOI 10.30898/1684-1719.2020.4.8
UDC
621.3.029.53

 

DESCRIPTION OF SEA SURFACE SLOPES IN APPLICATIONS RELATED TO RADIO WAVE REFLECTION

 

 A. S. Zapevalov 1,2, A. S. Knyazkov 1, I. P. Shumeyko 2

1 Marine Hydrophysical Institute of Russian Academy of Sciences, Kapitanskay str., 2, Sevastopol 299011, Russia

2 Sevastopol State University, University str., 33, Sevastopol 299053, Russia

 

The paper is received on March 27, 2020, after correction - on April 7, 2020

 

Abstract. The paper analyzes variations of sea surface slope dispersion with different-length surface waves that create the slopes. The analysis includes numerical modeling and comparison of results obtained using it with remote sensing data in the radio range as well as with in situ measurements. In numerical modeling, broadband models of surface wave spectra are used, which describe the wave field from long dominant waves to short ripples. To compare results we used data of radiometric and radar measurements as well as data of measurements performed using a laser inclinometer, string waveographs, and waveographic buoys. It is shown that the obtained type of slope dispersion variation with the wavelength range in general corresponds to the measurement data. A significant difference is noted at wavelengths not exceeding 0.01 m.

Key words: remote sensing, sea waves, radio waves, sea surface slopes, wind, statistical moments of the second order.

References

1.     Zapevalov A.S. Statistical characteristics of the moduli of slopes of the sea surface. Physical Oceanography. 2002. Vol.12. No 1. . 24-31.

2.     Pustovoytenko V.V., Lebedev N.E. Comparison of sea surface slope statistical moments obtained by means of optical scanners and laser inclinometers. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa Modern Problems of Remote Sensing of Earth from Space. 2015. Vol.12. No. 1. P. 102-109. (In Russian)

3.     Libard S.C., Krimmet E.J., Thebaut L.R. Evans, D.D., Shemdin, O.H. Optical image and laser slope meter intercomparisons on high-frequency waves. J. Geophys. Res. 1980. Vol.85. P. 4996-5002.

4.     Tang S., Shemdin O.H. Measurement of high frequency waves using a wave follower. J. Geophys. Res. 1983. Vol. 88. P. 9832-9840.

5.     Hasselmann D.E., Dunckel M., Ewing J.A. Directional wave spectra observed during JONSWAP 1973. J. Physical Octanogr. 1980. Vol. 10. No. 8. P. 1264-1280.

6.     Donelan M.A., Hamilton J., Hui W.H. Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. 1985. A315. P. 509-562.

7.     Knyazkov A.S. Modeling of the sea surface in quasi-mirror reflection of radio waves. In: Fizicheskoye i matematicheskoye modelirovaniye protsessov v geosredakh [Physical and mathematical modeling of processes in geomedia]. Moscow, OOO Print-Pro Publ. 2019. P. 86-88. (In Russian)

8.     Apel J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res. 1994. Vol.99. No C8. P. 16269-16291.

9.     Liu Y., Su M.-Y., Yan X.-H., Liu W.T. The mean-square slope of ocean surface waves and its effects on radar backscatter. J. of Atmospheric and Oceanic Technology. 2000. Vol. 17. P. 1092-1105.

10.  Elfouhaily T., Chapron B., Katsaros K., Vandemark D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997. Vol.102. P.15781-15786.

11.  Cheng Y., Liu Y., Xu Q. A new wind-wave spectrum model for deep water. Indian Journal of Marine Sciences. 2006. Vol. 35. No. 3. P. 181-194.

12.  Cox C., Munk W. Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Optical. Soc. America. 1954. Vol. 44. No. 11. P. 838-850.

13.   Zapevalov A.S. Distribution of variance of sea surface slopes by spatial wave range. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa Modern Problems of Remote Sensing of Earth from Space. 2020. Vol. 17. No. 1. P. 211-219. (In Russian)

14.   Hasselmann D.E., Dunckel M., Ewing J.A. Directional wave spectra observed during JONSWAP 1973. J. Physical Oceanogr. 1980. Vol. 10. No. 8. P. 1264-1280.

15.   Bass F.G., Fuks I.M. Wave from Statistically Rough Surface. ISBN 978-0-08-019896-5. Elsevier. 1979. 540 p. DOI: https://doi.org/10.1016/C2013-0-05724-6

16.   Wu S.T., Fung A.K. A noncoherent model for microwave emissions and backscattering from sea surface. J. Geophys. Res. 1972. Vol. 77, No. 30. P. 5917-5929.

17.   Danilychev M.V., Nikolaev A.N., Kutuza B.G. Application of the Kirchhoff method for practical calculations in microwave radiometry of wavy sea surface. Journal of Communication Technology and Electronics. 2009. Vol. 54.No. 8, P. 869-878. DOI: 10.1134/S1064226909080026

18.   Liu Y., Su M.-Y., Yan X.-H., Liu W.T. The mean-square slope of ocean surface waves and its effects on radar backscatter. J. of Atmospheric and Oceanic Technology. 2000. Vol. 17. P. 1092-1105.

19.   Phillips O.M. The dynamics of the upper ocean. Cambridge University Press, 1966. 269 p.

20.   Chen P., Yin Q., Huang P. Effect of non-Gaussian properties of the sea surface on the low-incidence radar backscatter and its inversion in terms of wave spectra by an ocean wave. Chinese J. Oceanology Limnology. 2015. Vol. 33. No. 5. P. 1142-1156.

21.  Hughes B.A., Grant H.L., Chappell R.W.A. A fast response surface-wave slope meter and measured wind-wave components. Deep-Sea Res. 1977. Vol. 24. No.12. P. 1211-1223.

22.  Khristophorov, G.N., Zapevalov A.S., Babiy M.V. Statistics of sea-surface slope for different wind speeds. Okeanologiya Oceanology. 1992. Vol. 32. Issue 3. P. 452-459. (In Russian)

23.  Kalinin S. A., Leikin I. A. Measurement of slopes of wind waves in the Caspian Sea. Izv. AN SSSR. Ser. Fizika atmosfery i okeana Izvestiya, Atmospheric and Oceanic Physics. 1988. Vol. 24. No.11. P. 1210-1217.

24.  Longuett-Higgins M.S., Cartwrighte D.E., Smith N.D. Observation of the directional spectrum of sea waves using the motions of the floating buoy. Proc. Conf. Ocean Wave Spectra. Englewood Cliffs. N.Y.: Prentice Hall, 1963. P. 111-132.

25.  Danilytchev M.V., Kutuza, B. G., Nikolaev A.G. The Application of Sea Wave Slope Distribution Empirical Dependences in Estimation of Interaction Between Microwave Radiation and Rough Sea Surface. IEEE Transactions on Geoscience and Remote Sensing. 2009. Vol. 47. No. 2. P. 652661.

27.   Zapevalov A.S. The effect of long wind waves on reflection electromagnetic radiation from the sea surface. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 6. URL: http://jre.cplire.ru/jre/jun19/8/text.pdf. DOI: 10.30898/1684-1719.2019.6.8 (In Russian)

 

For citation:

Zapevalov A.S., Knyazkov A.S., Shumeyko I.P. Describtion of sea surface slopes in applications related to radio wave reflection. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 4. Available at http://jre.cplire.ru/jre/apr20/8/text.pdf. DOI 10.30898/1684-1719.2020.4.8