Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 4
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.4.1

UDC 628.953.2: 533.9.082.74:681.7.068

 

Deposition of planar waveguide structures with a fluorosilicate shell on silicon and quartz substrates in a local microwave discharge of reduced pressure

 

L. Yu. Kochmarev, I. P. Shilov

Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Vvedensky sq., 1, Fryazino Moscow region 141190, Russia

 

The paper was received on March 26, 2021 

Abstract. An efficient method of gas-phase multilayer heterogeneous deposition of quartz and fluorosilicate glass in a non-isothermal plasma of a resonant local low pressure microwave discharge on quartz glass substrates and silicon wafers for the optical structures formation of waveguides and other waveguide elements based on them, is presented. It is shown that the nonisothermal plasma of a resonant local low pressure microwave discharge is an effective tool for the films formation on silicon and quartz substrates, both pure silicon dioxide and doped with fluorine. The cracks presence in films doped with fluorine is not observed even at their considerable thicknesses (20…60 µm). Deposition high rates and efficiency of silica glass doped with fluorine have been achieved (up to 7 wt.% of glass doping with fluorine at a film deposition rate of more than 3 μm/min). Planar and strip multimode and single-mode optical waveguides have been created. They are the basic structures of various fiber-optic components of local information transmission systems.

Key words: microwave plasma-chemical technology, plasmatron on the H10 wave, fluorosilicate nanolayers deposition, silicon wafers, stoichiometry, planar optical waveguide, integrated optical waveguides, silicon microelectronics, radiophotonics.

References

1. Zhitkovsky V.D., Klyuchnik N.T., Yakovlev M.Ya. Multi-pole splitters based on glass layered structures for fiber-optic information systems. Sistemy i sredstva svyazi, televideniya i radioveshchaniya [Systems and means of communication, television and radio broadcasting]. 2002. No.1-2. P.68. (In Russian)

2. Meint K. Smit, Van Dam C. PHASAR-Based WDM-Devices: Principles, Design and Applications. IEEE Journal of selected topics in quantum electronics. 1996. Vol.2.  No.2. P.236-250. https://doi.org/10.1109/2944.577370

3. Goncharov A.A., Kuzmin S.V., Svetikov V.V., Svidzinskij K.K., Sychugov V.A., Trusov N.V. Integrated optical demultiplexer based on the SiO2—SiON waveguide structure. Quantum Electronics. 2005. Vol.35. No.12. P.1163-1166. https://doi.org/10.1070%2FQE2005v035n12ABEH013044

4. Wang X., Zhou L., Li R., Xie J., Lu L., Wu K., Chen J. Continiously tunable ultra-thin silicon waveguide optical delay line. Optica. 2017. Vol.4. No.5. P.507-515. https://doi.org/10.1364/OPTICA.4.000507

5. Gontarev G.G., Blinov L.M., Volod'ko V.V., Lysov G.V., Zamorenov A.T., Truhin A.V. SVCH plazmatron na volne Í10 [Microwave plasmatron on the Í10 wave]. Authors certificate USSR No. 231037, 20.09.1967. (In Russian)

6. Artyushenko V.G., Blinov L.M., Gulyaev Yu.V. et al. Quartz optical fibers for the transmission of high-power laser radiation. Izvestiya Akademii Nauk SSSR [Bulletin of the Russian Academy of Sciences]. 1990. Vol.54. No.8. P.1570-1573. (In Russian)

7. Blinov L.M., Gulyaev Yu.V., Cherepenin V.A., Gerasimenko A.P. Resonance, non–isothermal, microwave plasmochemical systems for the special silica optical fibers synthesis technology. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2014. No.12. http://jre.cplire/ru/jre/dec14/4/text.pdf (In Russian)

8. Blinov L.M., Zamorenov A.T., Kirsanov A.V. et al. Ustanovka dlya SVCh plazmennoj obrabotki [Installation for microwave plasma treatment]. Authors certificate USSR No. 876039, 29.02.1980. (In Russian)

9. Babenko V.A., Grigoryanc V.V., Shilov I.P. et al. Quartz optical fibers for a transmission of high power laser radiation. Proceedings of the 10 International Scientific and Technical Conference "Lazery v nauke, tekhnike i medicine" ["Lasers in science, technology and medicine"]. Moscow, 1999. P.71-73. (In Russian)

10.  Dolgov I.I., Ivanov G.A., Chamorovskiy Yu.K., Yakovlev M.Ya. Hard radiation resistant single mode optical fibers with pure silica core. Foton-Ekspress [Foton-Express]. 2005. Vol.46. No.6. P.4-10. (In Russian)

11.  Babenko V.A., Kochmarev L.Yu., Shilov I.P. Microwave discharge of a waveguide plasmatron for deposition of high-NA structures based on silica glass. Journal of Communications Technology and Electronics. 2005. Vol.50. No.1. P.93-100.

12.  Babenko V.A., Kochmarev L.Yu., Shilov I.P. Ustrojstvo dlya izgotovleniya opticheskih volnovodov [A device for the optical waveguides manufacture]. Utility model patent No. 7428, 10.07.2008. (In Russian)

13.  Berikashvili V.Sh., Grigoryants V.V., Shilov I.P. et al. Microwave plasma-chemical deposition of planar waveguide structures based on quartz glass. Mikrosistemnaya tekhnika [Microsystem technology]. 2004. No.8. P.28-33. (In Russian)

14.  Shilov I.P., Grigoryants V.V., Kochmarev L.Yu., Berikashvili V.Sh., Klyuchnik N.T., Yakovlev M.Ya. Planar and strip multimode silica glass waveguides obtained in low-pressure microwave plasma. Proceedings of the XII International Scientific and Technical Conference "Vysokie tekhnologii v promyshlennosti Rossii". (Materialy i ustrojstva funkcional'noj elektroniki i mikrofotoniki) ["High Technologies in Russian Industry". (Materials and Devices of Functional Electronics and Microphotonics)]. Moscow, 2006. P.363-369. (In Russian)

15.  Shilov I.P., Berikashvili V.Sh., Grigoryants V.V., Kochmare L.Yu., Klyuchnik N.T., Yakovlev M.Ya. Multichannel optical splitters based on planar multimode silica glass waveguides. Journal of Communications Technology and Electronics. 2008. Vol.53. No.8. P.1017-1022.

 

For citation:

Kochmarev L.Yu., Shilov I.P. Deposition of planar waveguide structures with a fluorosilicate shell on silicon and quartz substrates in a local microwave discharge of reduced pressure. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.4. https://doi.org/10.30898/1684-1719.2021.4.1 (In Russian)