Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №4
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.4.2

 

direction-of-arrival estimation algorithm

in automotive distributed non-coherent

multi-radar systems

 

I.V. Artyukhin, I.M. Averin, A.G. Flaksman, A.E. Rubtsov

 

Nizhny Novgorod State University n.a. N.I. Lobachevsky

603950, Russia, Nizhny Novgorod, Gagarina ave., 23

 

The paper was received February 16, 2023.

 

Abstract. The present paper is focused on processing of signals from multiple sensors in non-coherent mode that provide improvement of angular resolution of close targets compared to single radar. The low-complexity technique of Direction-of-Arrival (DoA) estimation in Automotive Distributed Non-Coherent Multi-Radar Systems in the case of short length of snapshots is proposed. This technique consists of three main stages: beam-scanning procedure, transformation of the received signals of two radars to the unified coordinate system, and joint DoA estimation algorithm. The DoA method is represented by two approaches: (i) the Capon method modified for joint signal processing; (ii) low-complexity algorithm based on theory of auto-compensator. Performance of the system is investigated on the base of Monte-Carlo simulation. Current algorithm shows improvement of system performance of distributed non-coherent multi-radar systems compared to single radar.

Key words: automotive distributed non-coherent multi-radars system, advanced safety system, advanced driver assistance system, high-resolution DoA algorithms, Capon method, auto-compensator.

Corresponding author: Artyukhin Igor Vladimirovich, artjukhin@rf.unn.ru

 

References

1. Meinel H., Dickman J. Automotive radar: From its origin to future directions. Microwave Journal. 2013. V.56. P.24-40.

2. Molina-Masegosa R., Gozalvez J. LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications. IEEE Vehicular Technology Magazine. 2017. V.12. №4. P.30-39. https://doi.org/10.1109/MVT.2017.2752798

3. Richards M.A. Fundamentals of Radar Signal Processing. New York, McGraw-Hill. 2014. 656 p.

4. Patole S., Torlak M., Wang D., Ali M. Automotive Radars. A review of signal processing techniques. IEEE Signal Processing Magazine. 2017. V.34. №2. P.22-35. https://doi.org/10.1109/MSP.2016.2628914

5. Gottinger M., Hoffmann M., Christmann M., Schutz M., Kirsch F., Gulden P., Vossiek M. Coherent Automotive Radar Networks: The Next Generation of Radar-Based Imaging and Mapping. IEEE Journal of Microwaves. 2021. V.1. №1. P.149-163. https://doi.org/10.1109/JMW.2020.3034475

6. Folster F., Rohling H., Lubbert U. An automotive radar network based on 77 GHz FMCW sensors. IEEE International Radar Conference. 2005. P.871-876. https://doi.org/10.1109/RADAR.2005.1435950

7. Tuncer T.E., Friedlander B. Classical and Modern Direction-of-Arrival Estimation Academic Press, Inc. 2009. 456 p. https://doi.org/10.1016/C2009-0-19135-3

8. Godara L.C. Smart antennas. CRC Press. 2004. 472 p.

9. Ermolaev V.T., Flaksman A.G., Elokhin A.V. Kuptsov V.V. Minimal Polynomial Method for Estimating Parameters of Signals Received by an Antenna Array. Acoustical Physics. 2018. V.64. P.83-90. https://doi.org/10.1134/S1063771018010050

10. Ermolayev V.T., Flaksman A.G., Elokhin A.V., Shmonin O.A. Angular Superresolution of the Antenna-Array Signals Using the Root Method of the Minimum Polynomial of the Correlation Matrix. Radiophysics and Quantum Electronics. 2018. V.61. №3. P.232-241. https://doi.org/10.1007/s11141-018-9884-5

11. Bialer O., Kolpinizki S. A Multi-radar Joint Beamforming Method. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P.4175-4179. https://doi.org/10.1109/ICASSP.2019.8682458

12. Artyukhin I.V., Averin I.M., Flaksman A.G., Rubtsov A.E. Low-Complexity Algorithm of DoA Estimation in Automotive Distributed Non-Coherent Multi-Radar Systems. IX Mezhdunarodnaya konferentsiya «Inzhiniring & Telekommunikatsii En&T-2022» [Proceedings of IX International Conference «Engineering & Telecommunication En&T-2022»]. Moscow. 2022. P.5-8. (In Russian)

13. Bialer O., Jonas A., Tirer T. Super Resolution Wide Aperture Automotive Radar. IEEE Sensors Journal. 2021. V.21. №16. P.17846-17858. https://doi.org/10.1109/JSEN.2021.3085677

14. Widrow B., Stearn S.D. Adaptive signal processing. Prentice-Hall, Englewood Cliffs. 1985. 247 p.

15. Bjornson E., Hoydis J., Sanguinetti L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foundations and Trends in Signal Processing. 2017. V.11. №3-4. P.154-655. https://doi.org/10.1561/2000000093

16. Gentilho E., Scalassara P.R. Abrão T. Direction-of-Arrival Estimation Methods: A Performance-Complexity Tradeoff Perspective. Journal of Signal Processing Systems. 2020. №92. P.239-256. https://doi.org/10.1007/s11265-019-01467-4

17. Tyrtyshnikov E.E. Metody chislennogo analiza [The methods of numerical analysis]. Moscow, Akademiya. 2007. 320 p. (In Russian)

For citation:

Artyukhin I.V., Averin I.M., Flaksman A.G., Rubtsov A.E. Direction-of-arrival estimation algorithm in automotive distributed non-coherent multi-radar systems. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №4. https://doi.org/10.30898/1684-1719.2023.4.2 (In Russian)