Journal of Radio Electronics. eISSN 1684-1719. 2024. №4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.4.1

 

TWO METHODS FOR MEASURING THE AMPLITUDE-FREQUENCY
CHARACTERISTICS OF MULTIPATH IONOSPHERIC

SHORT-WAVE ADIO CHANNELS BASED ON THE DATA

OF OBLIQUE IONOSPHERIC RADIOSONDING

 

А.O. Schiriy

 

Pushkov Institute of Terrestrial Magnetism, Ionosphere
and Radio Wave Propagation RAS
108840, Russia, Moscow, Troitsk, Kaluzhskoe Hwy, 4

 

 

The paper was received February 14, 2024.

 

Abstract. Two methods of measuring the amplitude-frequency characteristics of multipath ionospheric shortwave radio channels with high frequency resolution (tens-hundreds of hertz) are presented. Since traditional narrow-band channels do not allow to separate the various modes of ionospheric propagation of short waves interfering with each other, it is proposed in this paper to use broadband signals, which makes it possible to separate the received modes of ionospheric propagation of a radio signal, as well as to distinguish the signal from interference. The advantage of the first technique is that, together with the amplitude-frequency characteristic of the radio line, as a result, the mode pattern of multipath propagation of short waves becomes known, which allows us to draw qualitative conclusions about the propagation of radio waves, as well as to apply classifications according to empirical multipath models. Disadvantages of the first technique: the manual stage of the selection of mode tracks on the ionograms of oblique sensing, as well as the loss of some information about the energy of the mode tracks due to the diffuseness (blurring) of the traces of mode tracks on the ionogram. The second method, on the contrary, gives only an estimate of the amplitude-frequency characteristics of a multipath shortwave radio line without revealing the mode pattern of multipath, but does it automatically and without losing information about the energy of diffuse tracks. The presentation of both methods in one article allows you to indicate the advantages and disadvantages of each of them, and, accordingly, the preferred areas of application. Since it is important to have a set of techniques with an integrated system approach to the study and measurement of the characteristics of the ionosphere and ionospheric radio channels.

Key words: amplitude-frequency characteristics of multipath radio channels, ionosphere, oblique radiosonding of the ionosphere, ionograms, ionogram processing, multipath propagation of short radio waves, measurement automation.

Corresponding author: Schiriy Andrey Olegovich, andreyschiriy@gmail.com

References

1. Kennedi R. Kanaly svjazi s zamiranijami i rassejaniem. M.: Sovetskoe radio, 1973. 304 s.

2. Giuseppe Fabrizio. High Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing, and Practical Applications. McGraw-Hill Education, 2013.

3. A.s. 1305880 SSSR, MPK N 04 V 3/46. Sposob izmerenija harakteristiki gruppovogo vremeni zamedlenija i amplitudno-chastotnoj harakteristiki kanala svjazi / A.D. Zor'ev (USSR). 4475118/24-09; Byull. Izobret., no.37 (1990)

4. A.s. 1305880 SSSR, MPK N 04 V 3/46. Sposob kontrolja kanala svjazi / T.A. Zolotuhina, Krjutchenko T.V. (USSR). 4481081/00-09; Byull. Izobret., no. 23 (1991)

5. Vovk V. Ja., Shumilov I. A. Izmerenie amplitudnyh harakteristik  mnogomodovogo signala pri NZ na subavroral'noj radiolinii // Tr. Arkt. i Antarkt. NII. 1991, №427. S.131–138. (In Russian)

6. Brjancev V. F., Starodubrovskij A. S. Izmerenija AChH pri naklonnom zondirovanii ionosfery shirokopolosnymi signalami // Proceedings of the Russian Conference "Sverhshirokopolosnye signaly v radiolokacii, svjazi i akustike". Murom, 2003. S. 263–266. (In Russian)

7. Mihajlov S. Ja. Modelirovanie otklika analizatora spektrov vertikal'nogo LChM-ionozonda i vosstanovlenie peredatochnoj funkcii v oblasti poluprozrachnosti E-sloja ionosfery // Izv. vuzov. Radiofizika. T. 44, 2001, №8, S.641–652. (In Russian)

8. Kunicin V. E., Usachev A. B. Amplitudno- i fazochastotnye harakteristiki vertikal'nogo radiozondirovanija magnitoaktivnoj ionosfery // Radiotehnika. 1991, № 1. S.8–10. (In Russian)

9. Kurkin V. I. Modelirovanie, diagnostika i prognozirovanie harakteristik KV signalov na osnove metoda normal'nyh voln: Dis. … dokt. fiz.-mat. nauk / ISZF SO RAN. Irkutsk, 1999. (In Russian)

10. Terehov L. S., Shapcev V. A. Povyshenie tochnosti radiozondirovanija ionosfery. Novosibirsk: Izd. SO RAN, 1997. 131 s. (In Russian)

11. Kolchev A. A. Issledovanie ionosfernyh kanalov rasprostranenija DKMV dlja signalov s rasshirennym spektrom: Dis. … kand. fiz.-mat. nauk / KGU. Kazan', 1996. 119 s. (In Russian)

12. Ivanov V. A., Kolchev A. A., Shumaev V. V. Apparatno-programmnyj kompleks dlja opredelenija peredatochnoj funkcii shirokopolosnogo KV - radiokanala // Problemy difrakcii i rasprostranenija voln: Mezhved. sb. M.: MFTI, 1995. S.103–109. (In Russian)

13. Filipp N.D., Blaunshtejn N.Sh., Eruhimov L.M., Ivanov V.A., Urjadov V.P. Sovremennye metody issledovanija dinamicheskih processov v ionosfere. Kishinev: Shtiinca, 1991. 286 s. (In Russian)

14. Kolchev A.A., Schiriy A.O. Rejection of spectrally lumped noise during chirp sounding of the ionosphere // Journal Radiophysics and Quantum Electronics. Vol.49, №9/Sept., 2006. pp.675-682. https://doi.org/10.1007/s11141-006-0102-5

15. Schiriy A.O. Razrabotka i modelirovanie algoritmov avtomaticheskogo izmerenija harakteristik ionosfernyh korotkovolnovyh radiolinij: Dis.  kand. tehn. Nauk. Sankt-Peterburgskij gos. universitet telekommunikacij im. prof. M.A. Bonch-Bruevicha.  SPb, 2007. (In Russian)

16. Shiriy A.O. HF channel transmit function module measurement // Proceedings of 5th International Conference on Actual Problems of Electron Devices Engineering, APEDE2002. 5. 2002. pp.365–369.

17. Kolchev A.A., Shiry A.O. Reconstruction of the frequency dependence of the complex reflection coefficient from data of the oblique LFM ionosonde // Atmospheric and Oceanic Optics, vol. 20, 2007, No.07, S.572-575.

18. Schiriy A.O. Algorithms and software for automation of measurement and data processing of real-time diagnostics of the ionosphere and ionospheric radio channels. Zhurnal radioelektroniki [Journal of Radio Electronics]. 2022. №10. https://doi.org/10.30898/1684-1719.2022.10.4 (In Russian)

19. Kolchev A.A., Schiriy A.O., Nedopekin A.E. Matematicheskie modeli i metodiki izmerenija AChH mnogoluchevyh ionosfernyh korotkovolnovyh radiolinij: monografija / Marijskij gos. un-t. Joshkar-Ola, 2013. 147 p. (In Russian)

20. Kolchev A.A., Schiriy A.O. Izmerenie AChH ionosfernoj KV radiolinii s cel'ju kompensacii iskazhenij, vnosimyh sredoj rasprostranenija // Fundamental'nye problemy radiojelektronnogo priborostroenija. 2009. vol.9. №4. pp.23–26. (In Russian)

21. Dolgacheva S. A., Makarova L. N., Nikolaev A. V. Obrabotka ionogramm vysokoshirotnyh stancij vertikal'nogo zondirovanija s ispol'zovaniem nejronnyh setej: ES i F2 sloi // Physics of Auroral Phenomena. 2020. vol.43. №1. pp.105-108. (In Russian)

22. 28. Patent RF №2697433. Tsybulya K.G. Sposob avtomaticheskogo opredeleniya parametrov ionosfernykh sloev po ionogrammam [Method of automatic determination of parameters of ionospheric layers by ionograms]. Application Date: 26.10.2018. Publication Date: 14.08.2019. (In Russian)

23. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Mihajlov S.Ja. Obrabotka i interpretacija ionogramm vertikal'nogo i naklonnogo zondirovanija dlja diagnostiki ionosfery na baze LChM-ionozonda. Vestnik SibGAU im. akad. M.F. Reshetneva. 2013. № 5(51). pp. 163–166. (In Russian)

24. Zykov E.Ju., Akchurin A.D., Sapaev A.L., Sherstjukov O.N., Avtomaticheskaja interpretacija ionogramm vertikal'nogo zondirovanija // Uchjon. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, vol.150, № 3, Izd-vo Kazanskogo un-ta, Kazan', 2008, pp.36-45. (In Russian)

25. Mochalov V.A., Mochalova A.V. Primenenie glubokogo obuchenija dlja raspoznavanija ionogramm // Trudy XXVI Vserossijskoj nauchnoj konferencii «Rasprostranenie radiovoln» (RRV-26), 2019, Kazan', Vol II, pp.413-417. (In Russian)

26. Egoshin A. B. Avtomatizirovannaja sistema adaptivnoj obrabotki signalov so sverhbol'shoj bazoj dlja radiozondirovanija ionosfernyh radiolinij: Dis. … kand. tehn. nauk / MarGTU. Joshkar-Ola, 2003. (In Russian)

27. Pulinets S. A. Automating vertical ionogram collection, processing and interpretation // Ionosonde networks and stations. Proceeding of Session G6 at the XXIV General Assembly of the International Union of Radio Science (URSI). Kyoto, Japan, National Geophysical Data Center, 1995. pp.37–43.

28. Galkin I. A., Reinisch B. W. The new ARTIST 5 for all digisondes // Ionosonde Network Advisory Group Bulletin. 2008. vol.69. №8. pp.1-8.

29. Fagre M., Prados J.A., Scandaliaris J., Zossi B.S., Cabrera M.A., Ezquer R.G. Elias A.G. Algorithm for automatic scaling of the F-layer using image processing of ionograms // IEEE Transactions on Geoscience and Remote Sensing. 2020. vol.59. №1. pp.220-227. https://doi.org/10.1109/tgrs.2020.2996405

30. Thanakulketsarat T., Sopon T., Phakphisut W., Hozumi K., Wongtrairat W. Ionograms scaling by using the convolutional neural network // 9th International Electrical Engineering Congress (iEECON). IEEE, 2021. pp.245-248.

31. Guo L., Xiong J. Multi-Scale Attention-Enhanced Deep Learning Model for Ionogram Automatic Scaling // Radio Science. 2023. vol.58. №3. p.e2022RS007566. https://doi.org/10.1029/2022RS007566

32. Lu Z., Hua C., Wei N., Feng J., Lou P., Liu W. Research on classification of vertical ionogram based on deep convolution neural network // Progress in Geophysics. 2022. vol.37. №5. pp.1834-1839. https://doi.org/10.6038/pg2022GG0073

33. Xiao Z., Wang J., Li J., Zhao B., Hu L., Liu L. Deep-learning for ionogram automatic scaling // Advances in Space Research. 2020. vol.66. №4. pp.942-950. https://doi.org/10.1016/j.asr.2020.05.009

34. Li H., Zhang C., Yin B., Jia X., Xu J., Xue J., Ma M. A Method for Separating the O/X Mode Signals in Vertical Ionograms Based on Improved U-Shaped Encoder–Decoder Network // IEEE Transactions on Geoscience and Remote Sensing. 2023. vol.61. pp.1-13.

35. De la Jara C., Olivares C. Ionospheric echo detection in digital ionograms using convolutional neural networks // Radio Science. 2021. vol.56. №8. pp.1-15.

36. Novickij P. V., Zograf I. A. Ocenka pogreshnostej rezul'tatov izmerenij. L.:Jenergoatomizdat. Leningr. otd-nie, 1991. 304 p.

37. Schiriy A.O. Problemy sozdanija kompleksnogo ispytatel'nogo modelirujushhego stenda zagorizontnyh radiolokacionnyh stancij dekametrovogo diapazona, vkljuchaja adaptaciju k geofizicheskoj obstanovke // Trudy IX Vserossijskoj nauchno-tehnicheskoj konferencii «Dal'njaja radiolokacija na sluzhbe Otechestvu» / NIIDAR, RTI im.akad.A.L.Minca. M.: Izd-vo MGTU im.N.Je.Baumana, 2023. pp.182-193. (In Russian)

38. Arutyunyan A.A., Konopelkin M.Yu., Schiriy A.O. Levels and stages of design and research of perspective radars in the specialized Russian radar CAD // Zhurnal radioelektroniki [Journal of Radio Electronics]. 2022. №5. https://doi.org/10.30898/1684-1719.2022.5.3

For citation:

Schiriy А.O. Two methods for measuring the amplitude-frequency characteristics of multipath ionospheric short-wave radio channels based on the data of oblique ionospheric radiosonding. // Journal of Radio electronics. – 2024. – №. 4. https://doi.org/10.30898/1684-1719.2024.4.1 (In Russian)