Journal of Radio Electronics. eISSN 1684-1719. 2024. №4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.4.11

 

 

THE INFLUENCE OF ORGANIC MATTER
AND VOLUMETRIC MOISTURE ON THE CROSSOVER
OF SOIL DIELECTRIC PERMITTIVITY SPECTRA

 

A.Yu. Karavayskiy, Yu.I. Lukin

 

Kirensky Institute of Physics SB RAS
660036, Russia, Krasnoyarsk, Akademgorodok 50, bld. 38

 

The paper was received November 16,2023.

 

Abstract. The present study considers the crossover of the real part spectra of the complex dielectric constant obtained in the frequency range from 15 MHz to 15 GHz and temperature range from 0 to 25 °C for moist organic soils with the content of organic matter varying from 11 to 54 %. Based on the obtained experimental dependences, the empirical model is proposed to estimate the average value of the frequencies at which the crossover point of the soil dielectric constant spectra are observed with temperature changes. The proposed model also includes a formula for calculating the value of volumetric moisture at which the crossover point of the soil dielectric constant spectra appears.

Key words: dielectric constant, organic soil, soil moisture, crossover point, Maxwell-Wagner effect.

Financing: The work was financially supported by the Russian Science Foundation and the Krasnoyarsk Regional Fund for Support of Scientific and Scientific and Technical Activities within the framework of the scientific project No. 22-27-20112.

Corresponding author: Karavayskiy Andrey Yurievich, rsdak@ksc.krasn.ru

References

1. Fang H. Y., Daniels J. L. Introductory geotechnical engineering: an environmental perspective. – CRC Press, 2017.

2. Robinson D. A. et al. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review //Vadose zone journal. – 2008. – Vol. 7. – №. 1. – P. 358-389.

3. Ragab R. et al. The cosmic-ray soil moisture observation system (Cosmos) for estimating the crop water requirement: new approach //Irrigation and drainage. – 2017. – Vol. 66. – №. 4. – P. 456-468.

4. SU S. L., Singh D. N., Baghini M. S. A critical review of soil moisture measurement //Measurement. – 2014. – Vol. 54. – P. 92-105.

5. Robinson D. A. et al. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials //Water Resources Research. – 2005. – Vol. 41. – №. 2.

6. Bobrov P. P. et al. Soil moisture measurement by the dielectric method //Eurasian Soil Science. – 2019. – Vol. 52. – P. 822-833.

7. Muhammad M., Almushfi S. Dielectric analysis model for measurement of soil Moisture water content using electrical capacitance volume tomography //Modern Applications of Electrostatics and Dielectrics. – IntechOpen, 2019. – P. 73.

8. Mironov V. L., Bobrov P. P., Fomin S. V. Multirelaxation generalized refractive mixing dielectric model of moist soils //IEEE Geoscience and Remote Sensing Letters. – 2012. – Vol. 10. – №. 3. – P. 603-606.

9. Kaurichev I. S. i dr. Pochvovedeniye [Soil science]. Pod red. I. S. Kauricheva. — 4-ye izd., pererab. i dop //M.: Agropromizdat. – 1989. 719 P. (In Russian)

10. Visconti F. et al. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils //Agricultural Water Management. – 2014. – Vol. 132. – P. 111-119.

11. Gardner C. M. K., Dean T. J., Cooper J. D. Soil water content measurement with a high-frequency capacitance sensor //Journal of Agricultural Engineering Research. – 1998. – Vol. 71. – №. 4. – P. 395-403.

12. Topp G. C., Davis J. L., Annan A. P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines //Water resources research. – 1980. – Vol. 16. – №. 3. – P. 574-582.

13. Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry: a review //Computers and electronics in agriculture. – 2001. – Vol. 31. – №. 3. – P. 213-237.

14. Kelleners T. J. et al. Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils //Soil Science Society of America Journal. – 2005. – Vol. 69. – №. 1. – P. 67-76.

15. Kornelsen K. C., Coulibaly P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications //Journal of Hydrology. – 2013. – Vol. 476. – P. 460-489.

16. Kerr Y. H. et al. The SMOS mission: New tool for monitoring key elements ofthe global water cycle //Proceedings of the IEEE. – 2010. – Vol. 98. – №. 5. – P. 666-687.

17. Ahlmer A. K. et al. Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure //Environmental earth sciences. – 2018. – Vol. 77. - №. 14. – P. 533.

18. Wu Y. et al. Dielectric properties of saline soils and an improved dielectric model in C-band //IEEE Transactions on Geoscience and Remote Sensing. – 2015. – Vol. 53. – №. 1. – P. 440-452.

19. Garrison J. et al. Remote sensing of soil moisture using P-band signals of opportunity (SoOp): Initial results //2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). – IEEE, 2017. – P. 4158-4161.

20. Hoekstra P., Delaney A. Dielectric properties of soils at UHF and microwave frequencies //Journal of geophysical research. – 1974. – Vol. 79. – №. 11. – P. 1699-1708.

21. Logsdon S. D. Soil dielectric spectra from vector network analyzer data //Soil Science Society of America Journal. – 2005. – Vol. 69. – №. 4. – P. 983-989.

22. Hasar H. et al. Permittivity Extraction of Soil Samples Using Coaxial-Line Measurements by a Simple Calibration //IEEE Transactions on Geoscience and Remote Sensing. – 2023. – Vol. 61. – P. 1-8.

23. Loewer M. et al. Ultra-broad-band electrical spectroscopy of soils and sediments—A combined permittivity and conductivity model //Geophysical Journal International. – 2017. – Vol. 210. – №. 3. – P. 1360-1373.

24. Arcone S. A., Grant S. A., Boitnott G. E. Maxwell–Wagner relaxation in two desert soils at medium and high water contents: Interpretation from modeling of time domain reflectometry data //IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. – 2015. – Vol. 9. – №. 1. – P. 201-211.

25. Chen Y., Or D. Effects of Maxwell‐Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity //Water resources research. – 2006. – Vol. 42. – №. 6.

26. Karavayskiy A.Yu., Lukin Yu.I. Vliyanie diehlektricheskikh relaksatsii pochvennoi vody na temperaturnuyu zavisimost' diehlektricheskoi pronitsaemosti pochvy [Influence of relaxations in soil water on the temperature dependence of soil permittivity] //Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. – 2023. – №. 1. (In Russian)

27. Karavayskiy A. Y., Lukin Y. I. The Effect of Clay Content on the Spectra of Permetivity of Mineral Soils at Positive Temperatures //2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). – IEEE, 2023. – P. 456-459.

28. Mironov V. L. et al. A technique for measuring the frequency spectrum of the complex permittivity of soil //Journal of Communications Technology and Electronics. – 2010. – Vol. 55. – №. 12. – P. 1368-1373.

29. Bakhvalov N. S., Zhidkov N. P., Kobel'kov G. M. Chislennyye metody [Numerical methods]. Uchebnik. – 2012. – 413 P. (In Russian)

30. GOST 10007-80. Mezhgosudarstvennyy standard. Ftoroplast-4. Tekhnicheskiye usloviya. [Interstate standard. Fluoroplastic-4. Technical conditions.] – M. : Standartinform, 2005. – 15 P. (In Russian)

31. Akhadov, YA. YU. Dielektricheskiye parametry chistykh zhidkostey [Dielectric parameters of pure liquids] / YA. YU. Akhadov. – M. : MAI, 1999. –– 856 P. (In Russian)

For citation:

Karavayskiy A.Yu., Lukin Yu.I. The influence of organic matter and volumetric moisture on the crossover of soil dielectric permittivity spectra. // Journal of Radio Electronics. – 2024. – №. 4. https://doi.org/10.30898/1684-1719.2024.4.11 (In Russian)