Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.4.5

 

 

INVESTIGATION OF WAVE REFLECTION

AND TRANSMISSION THROUGH A PLANAR LAYER

OF CHIRAL METAMATERIAL LOCATED IN A RECTANGULAR

WAVEGUIDE TAKEN INTO ACCOUNT OF MATERIAL DISPERSION

 

O.V. Osipov, D.N. Panin

 

Povolzhskiy State University of Telecommunications and Informatics

443010, Russia, Samara, L. Tolstoy str., 23

 

The paper was received February 29, 2024.

 

Abstract. The work analyzes the diffraction of the fundamental wave of a rectangular waveguide on a planar layer of a chiral metamaterial located in a transverse plane. The mathematical model of the metamaterial takes into account its chirality and dispersion of material parameters. To connect the electromagnetic field vectors through the parameters of the chiral layer, two-sided approximate boundary conditions are used. Cross-polarization of the field is taken into account in the work. A system of linear algebraic equations for the reflection and transmission coefficients of the fundamental and cross-polarized waves was obtained in the work. It is shown that at the cutoff frequencies of the fundamental and cross-polarized waves are also excited in the waveguide. It is shown that at different levels of attenuation in the waveguide, situations arise when the degeneracy of resonant frequencies arises and disappears. It has been proven that the reflection and transmission of the fundamental wave at low attenuation values is of a frequency-selective resonant nature.

Key words: metamaterial, chiral medium, rectangular waveguide, planar layer, fundamental wave, diffraction, material dispersion, chirality parameter, approximate boundary conditions.

Corresponding author: Osipov Oleg Vladimirovich, o.osipov@psuti.ru

 

References

1. Capolino F. Theory and phenomena of metamaterials. – CRC press, 2017.

2. Engheta N., Ziolkowski R. W. (ed.). Metamaterials: physics and engineering explorations. – John Wiley & Sons, 2006.

3. Iyer A. K., Alu A., Epstein A. Metamaterials and metasurfaces–Historical context, recent advances, and future directions //IEEE Transactions on Antennas and Propagation. – 2020. – Ò. 68. – ¹. 3. – Ñ. 1223-1231. https://doi.org/10.1109/TAP.2020.2969732

4. Zheludev N. I. A roadmap for metamaterials //Optics and Photonics News. – 2011. – Ò. 22. – ¹. 3. – Ñ. 30-35. https://doi.org/10.1364/OPN.22.3.000030

5. Suresh Kumar N. et al. A review on metamaterials for device applications //Crystals. – 2021. – Ò. 11. – ¹. 5. – Ñ. 518.s. Crystals 2021; 11; 518. https://doi.org/10.3390/cryst11050518

6. Vendik I. B., Vendik O. G. Metamaterialy i ih primenenie v tekhnike sverhvysokih chastot (Obzor) [Metamaterials and their application in microwave technology (Review)] //Zhurnal tekhnicheskoj fiziki. – 2013. – V. 83. – ¹. 1. – P. 3-28. https://doi.org/10.1134/S1063784213010234

7. Statsenko L. G. and ets. Primenenie metamaterialov v antennyh ustrojstvah cifrovyh sistem svyazi [Application of metamaterials in antenna devices of digital communication systems] //Zhurnal radioelektroniki. – 2024. – ¹. 1. https://doi.org/10.30898/1684-1719.2024.1.2

8. Buzov A. L. et al. Perspektivy ispol'zovaniya metamaterialov v antennah novogo pokoleniya [Prospects for the use of metamaterials in new generation antennas] //Fizika volnovyh processov i radiotekhnicheskie sistemy. – 2017. – V. 20. – ¹. 3-1. – P. 15-20. https://journals.ssau.ru/index.php/pwp/article/download/7078/6937.pdf

9. Lindell I. et al. Electromagnetic waves in chiral and bi-isotropic media. – Artech House, 1994.

10. Lakhtakia A., Varadan V. K., Varadan V. V. Time-harmonic electromagnetic fields in chiral media. – Berlin : Springer, 1989. – Ò. 335. – Ñ. 5, 13-18.

11. Caloz C., Sihvola A. Electromagnetic chirality, part 1: the microscopic perspective [electromagnetic perspectives] //IEEE Antennas and Propagation Magazine. – 2020. – Ò. 62. – ¹. 1. – Ñ. 58-71. https://doi.org/10.1109/MAP.2019.2955698

12. Lakhtakia A., Varadan V. V., Varadan V. K. Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media //JOSA A. – 1988. – Ò. 5. – ¹. 2. – Ñ. 175-184.

13. Silverman M. P. Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation //JOSA A. – 1986. – Ò. 3. – ¹. 6. – Ñ. 830-837. https://doi.org/10.1364/JOSAA.3.000830

14. Tretyakov S. A. Elektrodinamika slozhnyh sred: kiral'nye, biizotropnye i nekotorye bianizotropnye materialy [Electrodynamics of complex media: chiral, biisotropic and some bianisotropic materials] //Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1994. – Ò. 39. – ¹. 10. – Ñ. 1457-1470.

15. Varadan V. K., Lakhtakia A., Varadan V. V. Propagation in a parallel-plate wave guide //Journal of Wave-material Interaction. – 1988. – Ò. 3. – ¹. 3. – Ñ. 267.

16. Zhao R., Koschny T., Soukoulis C. M. Chiral metamaterials: retrieval of the effective parameters with and without substrate //Optics express. – 2010. – Ò. 18. – ¹. 14. – Ñ. 14553-14567. https://doi.org/10.48550/arXiv.1008.5177

17. Sihvola A. H. Temporal dispersion in chiral composite materials: A theoretical study //Journal of electromagnetic waves and applications. – 1992. – Ò. 6. – ¹. 7. – Ñ. 1177-1196.

18. Semchenko I. V., Tretyakov S. A., Serdyukov A. N. Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years. – 1996. https://doi.org/10.2528/PIER94112800

19. Condon E. U. Theories of optical rotatory power //Reviews of modern physics. – 1937. – Ò. 9. – ¹. 4. – Ñ. 432. https://doi.org/10.3367/UFNr.0019.193803d.0380

20. Aralkin M. V., Dementyev A. N., Osipov O. V. Matematicheskie modeli kiral'nyh metamaterialov na osnove mnogozahodnyh provodyashchih elementov [Mathematical models of chiral metamaterials based on multi-start conductive elements] //Fizika volnovyh processov i radiotekhnicheskie sistemy. – 2020. – Ò. 23. – ¹. 1. – Ñ. 8-19. https://doi.org/10.18469/1810-3189.2020.23.1.8-19

21. Aralkin M. V., Dementyev A. N., Osipov O. V. Issledovanie elektromagnitnyh harakteristik planarnyh kiral'nyh metastruktur na osnove sostavnyh spiral'nyh komponentov s uchetom geterogennoj modeli Bruggemana [Study of the electromagnetic characteristics of planar chiral metastructures based on composite spiral components taking into account the heterogeneous Bruggeman model] //Fizika volnovyh processov i radiotekhnicheskie sistemy. – 2020. – Ò. 23. – ¹. 3. – Ñ. 44-55. https://doi.org/10.18469/1810-3189.2020.23.3.44-55

22. Cory H., Rosenhouse I. Electromagnetic wave propagation along a chiral slab //IEE Proceedings H (Microwaves, Antennas and Propagation). – IET Digital Library, 1991. – Ò. 138. – ¹. 1. – Ñ. 51-54. https://doi.org/10.1049/ip-h-2.1991.0009

23. Oksanen M. I., Koivisto P., Tretyakov S. A. Vector circuit method applied for chiral slab waveguides //Journal of lightwave technology. – 1992. – Ò. 10. – ¹. 2. – Ñ. 150-155. https://doi.org/10.1049/ip-h-2.1991.0086

24. Eftimiu C., Pearson L. W. Guided electromagnetic waves in chiral media //Radio Science. – 1989. – Ò. 24. – ¹. 03. – Ñ. 351-359. https://doi.org/10.1029/RS024i003p00351

25. Pelet P., Engheta N. The theory of chirowaveguides. – 1990. https://doi.org/10.1109/8.43593

26. Pelet P., Engheta N. Modal analysis for rectangular chirowaveguides with metallic walls using the finite-difference method //Journal of electromagnetic waves and applications. – 1992. – Ò. 6. – ¹. 7. – Ñ. 1277-1285.

27. Kamenetskii E. O. On the technology of making chiral and bianisotropic waveguides for microwave propagation //Microwave and optical technology letters. – 1996. – Ò. 11. – ¹. 2. – Ñ. 103-107.

28. Guy S. et al. Full polarization control of optical planar waveguides with chiral material //ACS photonics. – 2017. – Ò. 4. – ¹. 11. – Ñ. 2916-2922. https://doi.org/10.1021/acsphotonics.7b00975

29. Neganov V. A., Osipov O. V. Otrazhayushchie, volnovedushchie i izluchayushchie struktury s kiral'nymi elementami [Reflecting, waveguide and radiating structures with chiral elements]. – 2006.

For citation:

Osipov O.V., Panin D.N. Investigation of wave reflection and transmission through a planar layer of chiral metamaterial located in a rectangular waveguide taken into account of material dispersion. // Journal of Radio Electronics. – 2024. – ¹. 4. https://doi.org/10.30898/1684-1719.2024.4.5 (In Russian)|