Journal of Radio Electronics. eISSN 1684-1719. 2024. №4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.4.8

 

 

 

DESIGN AND TECHNOLOGICAL FEATURES
OF HIGH TEMPERATURE INTEGRATED CIRCUITS

 

I.V. Frolov1, A.V. Bugakova2, O.V. Dvornikov3, D.V. Kleimenkin2

 

1Ulyanovsk Branch of Kotelnikov Institute of Radioengineering and Electronics
432071, Russia, Ulyanovsk, Goncharov st. 48/2

2Don State Technical University
344000,
Russia, Rostov-on-Don, Gagarin Square, 1

3Minsk Scientific and Research Instrument-Making Institute»
220113, Belarus, Minsk, Ya. Kolas str., 73

 

The paper was received March 15, 2024

 

Abstract. The problems of design and technological solutions for high-temperature analog microcircuits have been studied. Based on a review of publications devoted to the problems of designing high-temperature electronics products, it is shown that the most studied and used in mass production materials for the manufacture of crystals operating in the temperature range up to 300-350 ºС and in some cases up to 500 ºС are silicon carbide of the 4H-SiC and 6H-SiC. The use of gallium nitride GaN as a material for crystals makes it possible to expand the operating temperature range of semiconductor devices to 600 ºС. These materials have a large band gap, a high charge carrier saturation rate, and a low concentration of intrinsic charge carriers. One of the main factors limiting the growth rate of production of high-temperature electronics products is the complexity of packaging. It is shown that special attention of researchers is currently paid to the selection of case materials, materials for fastening crystals and materials of conductors connecting the contact pad of the crystals with the traverses of the case and coordinating the coefficient of thermal expansion of the crystal, the material for fastening the crystal and the housing seat on which the crystal is placed.

Key words: high-temperature electronics, integrated circuits, design, materials.

Financing: The research has been carried out at the expense of the Grant of the Russian Science Foundation No. 23-79-10069, https://rscf.ru/project/23-79-10069/.

Corresponding author: Frolov Ilya Vladimirovich, ilya-frolov88@mail.ru

References

1. Скупов А. Технологические материалы для высокотемпературных микросхем [Technological materials for high-temperature microcircuits] // Вектор высоких технологий. – 2017. – №6 (35).

2. Wei R. et al. Thermal conductivity of 4H-SiC single crystals //Journal of Applied Physics. – 2013. – V. 113. – №. 5. https://doi.org/10.1063/1.4790134

3. Qian X., Jiang P., Yang R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance // Materials Today Physics. – 2017. – V. 3. – P. 70-75. https://doi.org/10.1016/j.mtphys.2017.12.005

4. Lien W. C. et al. 4H-SiC N-channel JFET for operation in high-temperature environments //IEEE Journal of the Electron Devices Society. – 2014. – V. 2. – №. 6. – P. 164-167. https://doi.org/10.1109/JEDS.2014.2355132

5. Neudeck P. G., Spry D. J., Chen L. Y. Experimental and theoretical study of 4H-SiC JFET threshold voltage body bias effect from 25° C to 500° C // Materials Science Forum. – Trans Tech Publications Ltd, 2016. – V. 858. – P. 903-907. https://doi.org/10.4028/www.scientific.net/MSF.858.903

6. Alexandrov P. et al. Analog and logic high temperature integrated circuits based on SiC JFETs // Additional Papers and Presentations. – 2014. – V. 2014. – №. HITEC. – P. 000061-000065. https://doi.org/10.4071/HITEC-TP12

7. Elgabra H., Siddiqui A., Singh S. 4H-SiC bipolar SRAM cell for high temperature applications // Extended Abstracts of the 2016 International Conference on Solid State Devices and Materials, Tsukuba. – 2016. – P. 1013-1014. https://doi.org/10.7567/SSDM.2016.PS-14-18L

8. Elgabra H., Siddiqui A., Singh S. Simulation of conventional bipolar logic technologies in 4H-SiC for harsh environment applications //Japanese Journal of Applied Physics. – 2016. – V. 55. – №. 4S. – С. 04ER08. https://doi.org/10.7567/JJAP.55.04ER08

9. Xiaoyan T. et al. 4H-SiC integrated circuits for high-temperature applications //Journal of Crystal Growth. – 2023. – V. 605. – P. 127060. https://doi.org/10.1016/j.jcrysgro.2022.127060

10. Чаплыгин Ю. А. и др. Исследование электрических характеристик КМОП-КНИ-структур с проектными нормами 0.5 мкм для высокотемпературной электроники [Study of the electrical characteristics of CMOS-SOI structures with design standards of 0.5 μm for high-temperature electronics] // Проблемы разработки перспективных микро-и наноэлектронных систем (МЭС). – 2016. – №. 4. – С. 10-15.

11. High Temperature SOI CMOS Technology (H035) [Электронный ресурс]. – Режим доступа: https://www.ims.fraunhofer.de/en/Business_Units_ and_Core_Competencies/High-Temperature-Electronics/Technologies/HT-SOI-CMOS.html (дата обращения: 07.08.2024).

12. Grella K. et al. High temperature characterization up to 450 C of MOSFETs and basic circuits realized in a silicon-on-insulator (SOI) CMOS technology //Journal of microelectronics and electronic packaging. – 2013. – V. 10. – №. 2. – P. 67-72. https://doi.org/10.4071/imaps.374

13. Huque M. A. et al. Silicon-on-insulator based high-temperature electronics for automotive applications //2008 IEEE international symposium on industrial electronics. – IEEE, 2008. – P. 2538-2543. https://doi.org/10.1109/ISIE.2008.4677170

14. Лебедев А. А., Челноков В. Е. Широкозонные полупроводники для силовой электроники [Wide-gap semiconductors for power electronics] //Физика и техника полупроводников. – 1999. – Т. 33. – №. 9. – С. 1096-1099.

15. Shibata H. et al. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process //Materials Transactions. – 2007. – V. 48. – №. 10. – P. 2782-2786. https://doi.org/10.2320/matertrans.MRP2007109

16. Hassan A. et al. Circuit techniques in GaN technology for high-temperature environments // Electronics. – 2021. – V. 11. – №. 1. – P. 42. https://doi.org/10.3390/electronics11010042

17. Hassan A. et al. Towards GaN500-based high temperature ICs: Characterization and modeling up to 600° C // 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS). – IEEE, 2020. – P. 275-278. https://doi.org/10.1109/NEWCAS49341.2020.9159796

18. Li S. et al. High‐temperature electrical performances and physics‐based analysis of p‐GaN HEMT device //IET Power Electronics. – 2020. – V. 13. – №. 3. – P. 420-425. https://doi.org/10.1049/iet-pel.2019.0510

19. Hassan A., Savaria Y., Sawan M. Electronics and packaging intended for emerging harsh environment applications: A review //IEEE transactions on very large scale integration (VLSI) systems. – 2018. – V. 26. – №. 10. – P. 2085-2098. https://doi.org/10.1109/TVLSI.2018.2834499

20. Watson J., Castro G. A review of high-temperature electronics technology and applications //Journal of Materials Science: Materials in Electronics. – 2015. – V. 26. – P. 9226-9235. https://doi.org/10.1007/s10854-015-3459-4

21. Salem J. M., Ha D. S. A high temperature active GaN-HEMT downconversion mixer for downhole communications //2016 IEEE International Symposium on Circuits and Systems (ISCAS). – IEEE, 2016. – P. 946-949. https://doi.org/10.1109/ISCAS.2016.7527398

22. Neudeck P. G. et al. Extreme temperature 6H‐SiC JFET integrated circuit technology //physica status solidi (a). – 2009. – V. 206. – №. 10. – P. 2329-2345. https://doi.org/10.1002/pssa.200925188

23. Neudeck P. G. et al. Stable Electrical Operation of 6H–SiC JFETs and ICs for Thousands of Hours at 500 °C // IEEE Electron Device Letters. – 2008. – V. 29. – №. 5. – P. 456-459. https://doi.org/10.1109/LED.2008.919787

24. Chen L. Y. et al. Packaging of High Temperature SiC Based Electronics // NASA, USA. – 2015.

For citation:

Frolov I.V., Bugakova A.V., Dvornikov O.V., Kleimenkin D.V. Design and technological features of high temperature integrated circuits. // Journal of Radio Electronics. – 2024. – №. 4. https://doi.org/10.30898/1684-1719.2024.4.8  (In Russian)