Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹4

Contents

Full text (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.4.9  

 

 

HIGH-TEMPERATURE TREATMENT OF FUNCTIONAL HEUSLER

ALLOY Ni46Mn41In13 THIN FOILS FOR MICROSYSTEM DEVICES

AND ELECTRONICS

 

D.D. Kuznetsov1, E.I. Kuznetsova2, D.V. Danilov3, I.I. Musabirov4,

A.V. Prokunin1, V.V. Koledov1, V.G. Shavrov1

 

1 Kotelnikov IRE RAS, 125009, Russia, Moscow

2 M.N. Mikheev Institute of Metal Physics of Ural Branch RAS

620108, Russia, Ekaterinburg

3 IRC for Nanotechnology of the Science Park of St. Petersburg State University

199034, Russia, St. Petersburg

4 Institute for Metals Superplasticity Problems RAS

450001, Russia, Ufa

 

The paper was received March 20, 2024.

 

Abstract. In this study, the high-temperature transformation in a thin foil of non-stoichiometric Heusler alloy based on Ni-Mn-In is investigated using in-situ TEM. The highly ordered cubic L21 phase undergoes decomposition upon heating, forming a phase with a composition close to Ni75Mn25, which is identified as disordered FCC-Ni3Mn and secondary phases, mainly manganese oxides and sulfides. All phases formed upon heating to a temperature of 1173 K are preserved during the in-situ cooling experiment to a temperature of 123 K.

Key words: phase transformation, phase stability, size effects.

Financing: 1. The work was carried out with partial support from the state assignment of the IRE Kotelnikova RAS; 2. The work was carried out with partial support from the state assignment of the M.N. Mikheev Institute of Physics of Metals, Ural Branch of the Russian Academy of Sciences, code "Pressure" G.r. ¹ 122021000032-5; 3. The preparation of foils and electron microscopic studies were carried out with the support of St. Petersburg State University, project code AAAA-A19-119091190094-6; 4. Alloy ingots were melted as part of the state assignment of the IPSM RAS.

Corresponding author: Kuznetsov Dmitry Dmitrievich, Kuznetsov.dmitry89@gmail.com

 

References

1. Wu M. H. et al. Industrial applications for shape memory alloys // Proceedings of the international conference on shape memory and superelastic technologies, Pacific Grove, California. – 2000. – V. 44. – ¹. 1.

2. Song C. History and current situation of shape memory alloys devices for minimally invasive surgery // The Open Medical Devices Journal. – 2010. – V. 2. – ¹. 1.

3. Cuschieri A. Variable curvature shape-memory spatula for laparoscopic surgery // Surgical endoscopy. – 1991. – V. 5. – P. 179-181.

4. Himpens J. M. Laparoscopic inguinal hernioplasty: repair with a conventional vs a new self-expandable mesh // Surgical endoscopy. – 1993. – V. 7. – P. 315-318.

5. Frank T., Willetts G. J., Cuschieri A. Detachable clamps for minimal access surgery // Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. – 1995. – V. 209. – ¹. 2. – P. 117-120.

6. Frank T. et al. Atraumatic retractor for endoscopic surgery // Surgical endoscopy. – 1995. – V. 9. – P. 841-843.

7. Liu J. et al. NiMn‐based alloys and composites for magnetically controlled dampers and actuators // Advanced Engineering Materials. – 2012. – V. 14. – ¹. 8. – P. 653-667.

8. McHenry M. E., Laughlin D. E. Nano-scale materials development for future magnetic applications // Acta materialia. – 2000. – V. 48. – ¹. 1. – P. 223-238.

9. Lega P. et al. Blocking of the martensitic transition at the nanoscale in a Ti 2 NiCu wedge // Physical Review B. – 2020. – V. 101. – ¹. 21. – P. 214111.

10. Hirohata A., Lloyd D. C. Heusler alloys for metal spintronics // MRS Bulletin. – 2022. – V. 47. – ¹. 6. – P. 593-599.

11. Belo J. H. et al. Magnetocaloric materials: From micro-to nanoscale // Journal of Materials Research. – 2019. – V. 34. – ¹. 1. – P. 134-157.

12. Vishnoi R., Singhal R., Kaur D. Thickness dependent phase transformation of magnetron-sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films // Journal of Nanoparticle Research. – 2011. – V. 13. – P. 3975-3990.

13. Teichert N. et al. Influence of film thickness and composition on the martensitic transformation in epitaxial Ni–Mn–Sn thin films // Acta Materialia. – 2015. – V. 86. – P. 279-285.

14. D. D. Kuznetsov, E. I. Kuznetsova, A. V. Mashirov, A. S. Loshachenko, D. V. Danilov, G. A. Shandryuk, V. G. Shavrov, V. V. Koledov In Situ TEM Study of Phase Transformations in Nonstoichiometric Ni46Mn41In13 Heusler Alloy // Physics of the Solid State. – 2022. – V. 64. – P. 15–21.

15. Kuznetsov D.D. et al. Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In  // Nanomaterials . – 2023. – V. 13. – P. 1385–1402.

16. Kuznetsov D.D. et al. Influence of the Cooling Rate on Austenite Ordering and Martensite Transformation in a Non-Stoichiometric Alloy Based on Ni-Mn-In // Journal of Composites Science. – 2023. – V. 7. – P. 514–533.

17. Bainsla L., Suresh K.G. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications // Applied Physics Reviews. – 2016. – V. 3. – ¹. 3.

18. Elphick K. et al. Heusler alloys for spintronic devices: review on recent development and future perspectives // Science and technology of advanced materials. – 2021. – V. 22. – ¹. 1. – P. 235-271.

19. Arman M., Shahri F., Gholamipour R. Effect of Al doping on the kinetics of reverse martensitic transformation in Ni-Mn-In Heusler alloys //Materials Science and Engineering: B. – 2024. – V. 300. – P. 117068.

20. Å.Ñ. Áåëîñëóäöåâà, Â.Ã. Ïóøèí, Í.Í. Êóðàíîâà, Ä.Å. Âèíîêóðîâ, Î.À. Ãóñåâ Èññëåäîâàíèå ôàçîâûõ ïðåâðàùåíèé ìèêðîñòðóêòóðû ñïëàâîâ íà îñíîâå áèíàðíîãî ñïëàâà ñòåõèîìåòðè÷åñêîãî ñîñòàâà Ni-Mn // Ìåæä. íàó÷íî-òåõíè÷. êîíô. «XXII Óðàëüñêàÿ øêîëà-ñåìèíàð ìåòàëëîâåäîâ – ìîëîäûõ ó÷åíûõ», Åêàòåðèíáóðã, 27.10.2023, ISBN: 978-5-91256-612-7, Ñáîðíèê ñòàòåé , Åêàòåðèíáóðã : ÓðÔÓ, 2023. – Ñ. 311-315.

 

For citation:

Kuznetsov D.D., Kuznetsova E.I., Danilov D.V., Musabirov I.I., Prokunin A.V., Koledov V.V., Shavrov V.G. High-temperature treatment of functional Heusler alloy Ni46Mn41In13 thin foils for microsystem devices and electronics. // Journal of Radio Electronics. – 2024. – ¹. 4. https://doi.org/10.30898/1684-1719.2024.4.9