Journal of Radio Electronics. eISSN 1684-1719. 2025. №4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.4.11

 

 

 

The influence of small-bit quantization

and limitations of the radar signal,

retransmitted through DRFM, on the quality

of the artificial radar image, formed in SAR

 

YU.N. Gorbunov 1,2, A.P. Sonin 3

 

1 Kotelnikov IRE RAS, Fryazino Branch

141190, Russia, Fryazino, Vvedenskogo sq., 1

2 JSC «Central Scientific Research Radio Engineering Institute named after Academician
A.I. Berg», 107078, Russia, Moscow, Novaya Basmannaya st., 20, b.9

3 JSC «Scientific and Production Association of Long-Range Radiolocation named after Academician A.L. Mintz», 127083, Russia, Moscow, 8 Marta st., 10, b.1

 

The paper was received January 18, 2025.

 

Abstract. The article considers the influence of quantization and limitations of the retransmitted radar signal in analog-to-digital (ADC) and digital-to-analog (DAC) converters of digital radio frequency memory (DRFM) on the quality of the artificial radar image (RI), formed in a radar with a synthetic aperture antenna (SAR). The DRFM, built on the basis of the inverted Omega-k algorithm, forming an artificial map of the Earth's surface (Man-Made Map) for testing SAR, is investigated. The studies were carried out by numerical methods of parallel modeling of digital signal processing (DSP) processes in MATLAB. Numerical modeling of this DRFM was carried out in single-reflector and multireflector modes of synthesis of digital radio holograms (DRH) with different bit depths of the ADC and DAC, as well as with limitations of the amplitude of the reproduced radio signal. The output RIs (at the SAR output) corresponding to the initial (loaded into DRFM) pictures were obtained, and the levels of generated parasitic components in the obtained images were determined depending on the bit depth of the ADC and DAC and on the level of amplitude limitation of the reproduced radio signal. The distributions of instantaneous values of the reproduced radio signal at the DRFM output were analyzed when simulating several point reflectors (PR). Energy equations were derived for cases of simulating reflections from the underlying surface and from a scene containing many PRs for SAR using DRFM.

Key words: digital Radio-Frequency memory (DRFM), Synthetic Aperture Radar (SAR), Digital Radio-Hologram (DRH), radar image, Man-Made Map, Digital Signal Processing (DSP), Analog-to-Digital Converter (ADC), Digital-to-Analog Converter (DAC), MATLAB, Omega-k algorithm, Peak to Average Ratio (PAR).

Corresponding author: Alexander Petrovich Sonin, dsplab@mail.ru

 

 

References

1. Gorbunov U.N., Sonin A.P., Khromtsev A.V., Svirin D.M. Synthetic Aperture Radar testing by means DRFM. // Journal of Radio Electronics. – 2022. – №1. https://doi.org/10.30898/1684-1719.2022.1.7 (In Russian)

2. Сонин А.П. Тестирование радиолокаторов с синтезированной апертурой антенны при помощи цифровой радиочастотной памяти (DRFM), формирующей искусственные карты // Дальняя радиолокация на службе Отечеству. – 2022. – С. 215-228. [Sonin A.P. Synthetic Aperture Radar testing using Digital Radio-Frequency Memory with man-made map forming // Long-range radiolocation on service to the Fatherland. – 2022. – P. 215-228.]

3. Yan Z., Guoqing Z., Yu Z. Research on SAR jamming technique based on man-made map // 2006 CIE International Conference on Radar. – IEEE, 2006. – С. 1-4.

4. Saeedi J. A new hybrid method for synthetic aperture radar deceptive jamming // International Journal of Microwave Engineering (JMICRO). – 2019. – Т. 4. – №. 1. – С. 1-14.

5. Sun Q. et al. Efficient deceptive jamming method of static and moving targets against SAR // IEEE Sensors Journal. – 2018. – Т. 18. – №. 9. – С. 3610-3618. https://doi.org/10.1109/JSEN.2018.2813521

6. Cumming I. G., Wong F. H. Digital processing of synthetic aperture radar data // Artech house. – 2005

7. Сонин А.П. Параллельное моделирование в MATLAB цифровой радиочастотной памяти (DRFM), формирующей искусственные карты для тестирования радиолокатора с синтезированной апертурой антенны // Технологии разработки и отладки сложных технических систем. – 2023. – T. 2. – С. 267-274. [Sonin A.P. Parallel MATLAB simulation of DRFM that generates man-made maps for SAR testing // Technologies for development and debugging of complex technical systems. – 2023. – V. 2. – P. 267-274.]

8. Сонин А.П. Влияние перестройки периода повторения зондирующих радиоимпульсов на качество радиолокационного изображения, формируемого цифровой радиочастотной памятью на выходе тестируемого радиолокатора с синтезированной апертурой антенны // Дальняя радиолокация на службе Отечеству. – 2024. – C. 362-376. [Sonin A.P. Transmitted signal Pulse Repetition Interval agility influence to the quality of the radar image, formed by Digital Radio-Frequency Memory at the output of the tested Synthetic Aperture Radar // Long-range radiolocation on service to the Fatherland. – 2024. – P. 362-376.]

9. Сонин А.П. Способ радиолокационной съемки Земли и околоземного пространства радиолокатором с синтезированной апертурой антенны в неоднозначной по дальности полосе с селекцией движущихся целей на фоне отражений от подстилающей поверхности и радиолокатор с синтезированной апертурой антенны для его реализации. Описание изобретения к патенту RU2740782С1 [Sonin A.P. Method of radar survey of the Earth and near-Earth space by a synthetic aperture radar at ambiguous range band with moving targets selection against the background of reflections from the underlying surface and a synthetic aperture radar for its implementation. Description of the invention from the RU2740782С1 patent]

10. Горбунов Ю.Н., Куликов Г.В., Шпак А.В. Радиолокация: стохастический подход. – 2016. [Gorbunov Yu.N., Kulikov G.V., Shpak A.V. Radiolocation: stochastic approach. – 2016.]

11. Горбунов Ю.Н. Цифровая обработка радиолокационных сигналов в условиях использования грубого (малоразрядного) квантования. – 2007. [Gorbunov Yu.N. Digital processing of radar signals under conditions of using coarse (low-bit) quantization. – 2007.]

12. Schleher G. D. C. A Electronic Warfare in the Information Age //Artech House. – 1999.

13. Непомнящий Г.А. О влиянии параметров цифрового устройства записи и воспроизведения на качество имитационного сигнала сложной структуры // Цифровые радиоэлектронные системы. – 2007-2008. – №. 7. – C. 89-95. [Nepomnyashchii G.A. On the influence of digital recording and playback device parameters to the quality of a simulated signal with complex structure // Digital radio electronic systems. – 2007-2008. – №. 7. – C. 89-95.]

14. Pace P. E. Developing digital RF memories and transceiver technologies for electromagnetic warfare. – Artech House, 2022.

15. Горбунов Ю.Н., Акопян Г.Л. Обработка и генерация хаотических сигналов в технологии DRFM: учет ресурсных ограничений // Радиоэлектроника. Наносистемы. Информационные технологии. – 2020. – Т. 12. – №. 2. – С. 219-226. https://doi.org/10.17725/rensit.2020.12.219 [Yuri N. Gorbunov, Gurgen L. Akopyan. Chaotic signal processing and generation in DRFM technologies: accounting for resource constraints. RENSIT, 2020, 12(2):219-226.]

16. Перунов Ю., Куприянов А. Методы и средства радиоэлектронной борьбы. – Litres, 2022. [Perunov Yu., Kupriyanov A. Electronic warfare methods and means. – Litres, 2022]

17. Сонин А.П. Моделирование цифровой обработки сигналов в радиолокаторах с синтезированной апертурой антенны на множестве CUDA GPU в MATLAB // Технологии разработки и отладки сложных технических систем. – 2020. – С. 429-436. [Sonin A.P. Synthetic-Aperture Radars Digital Signal Processing Modeling in MATLAB with Multiple CUDA GPUs // Technologies for development and debugging of complex technical systems. – 2020. – P. 429-436.]

18. Parallel Computing Toolbox User's Guide. R2024a. – The MathWorks, Inc., 2024. – 1264 p.

19. Вентцель Е.С. Теория вероятностей. – «Высшая школа», 2006 [Venttsel' E.S. Probability Theory. – «Vysshaya shkola», 2006]

20. Kim B. Doherty power amplifiers: from fundamentals to advanced design methods. – Academic Press, 2018.

21. Кочемасов В., Косичкина Т. Усилители мощности по схеме Догерти часть 1 // Электроника: наука, технология, бизнес. – 2019. – №. 3. – С. 144-153. https://doi.org/10.22184/1992-4178.2019.184.3.144.152 [Kochemasov V., Kosichkina T. Doherty Power Amplifiers. Part 1 // Electronics: Science, Technology, Business. – 2019. – №. 3. – P. 144-153.]

22. Стародубцев Г. Усилители Догерти для современных систем связи // Электронные компоненты. – 2020. – №. 4. – C. 42-45. [Starodubtsev G. Doherty Amplifiers for Modern Communication Systems // Electronic Components. – 2020. – №. 4. – P. 42-45.]

23. Юдин Л.М., Фомичев К.И. Энергетические соотношения при создании помех. – Москва, Базовая кафедра МИРЭА №333, 1983 [Yudin L.M., Fomichev K.I. Energy relationships in jamming. – Moscow, MIREA Basic Department №333, 1983]

24. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием. – Радиотехника, 2003. [Perunov Yu.M., Fomichev K.I., Yudin L.M. Electronic jamming of information channels of weapons control systems. – Radiotekhnika, 2003.]

25. Бородин А.М., Лобанов Б.С., Сонин А.П. Пути построения интегрированных бортовых радиотехнических комплексов с цифровой обработкой радиосигналов. – 2011. [Borodin A.M., Lobanov B.S., Sonin A.P. Ways of construction of integrated onboard radiotechnical complexes with digital radio-signals processing. – 2011.]

For citation:

Gorbunov YU.N., Sonin A.P. The influence of small-bit quantization and limitations of the radar signal, retransmitted through DRFM, on the quality of the artificial radar image, formed in SAR // Journal of Radio Electronics. – 2025. – №. 4. https://doi.org/10.30898/1684-1719.2025.4.11 (In Russian)