

DOI: https://doi.org/10.30898/1684-1719.2025.4.13 УДК: 621.391.825

ИССЛЕДОВАНИЕ ВЛИЯНИЯ СПОСОБОВ ТРАССИРОВКИ ДИФФЕРЕНЦИАЛЬНЫХ ЛИНИЙ ПЕРЕДАЧИ НА ИХ ПОМЕХОУСТОЙЧИВОСТЬ

С.В. Власов, М.С. Мурманский, Е.С. Жечев

Томский государственный университет систем управления и радиоэлектроники 634050, г. Томск, пр. Ленина, 40.

Статья поступила в редакцию 23 января 2025 г.

Аннотация. Исследование посвящено анализу влияния способов трассировки дифференциальных линий передачи на их устойчивость к кондуктивным электромагнитным помехам (ЭМП) в дифференциальном и синфазном режимах. Проблема обеспечения электромагнитной совместимости (ЭМС) остается актуальной в условиях роста требований к высокоскоростным интерфейсам, таким как LVDS, USB и HDMI, используемым в современных электронных системах. Возникающая в этих устройствах уязвимость к электромагнитным воздействиям требует разработки новых методов трассировки, способных эффективно подавлять как сверхширокополосные (СШП), так и узкополосные (УП) помехи. Методология исследования включает квазистатическое и электродинамическое моделирование временных и частотных характеристик линий передачи. В рамках работы были исследованы три типа трассировки проводников – меандровая, спиральная и прямая, с варьированием числа витков. Основной целью исследования является определение оптимальных схем трассировки проводников для обеспечения устойчивости дифференциальных линий передачи к СШП и УП помехам. Полученные результаты показывают, что

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025</u>

спиральная трассировка с 9 витками наиболее эффективна для подавления СШП ЭМП в дифференциальном режиме, а прямая трассировка демонстрирует лучшее подавление УП ЭМП в синфазном режиме. Минимум амплитуды выходного напряжения для СШП ЭМП достигается при спиральной трассировке проводников с 9 витками и составляет 0,089 В (при напряжении на входе 0,5 В), а для УП ЭМП – при прямой реализации и составляет 0,112 В. Установлено, что изменение количества витков при спиральной или меандровой трассировке не влияет на частоту среза, но влияет на средние значения коэффициента передачи и коэффициента отражения от входа.

Ключевые слова: дифференциальный режим, синфазный режим, схемы трассировки, *N*-нормы, микрополосковая линия, временной отклик, преднамеренные электромагнитные помехи, электромагнитная совместимость.

Финансирование: Работа выполнена в рамках проекта FEWM-2024-0005 Минобрнауки России.

Автор для переписки: Мурманский Михаил Семенович, mihailmurmanskii@gmail.com

Введение

С развитием цифровой электроники и увеличением скорости передачи данных повышаются требования к обеспечению электромагнитной совместимости (ЭМС) электронных систем [1, 2]. Дифференциальные линии передачи, используемые в таких высокоскоростных интерфейсах, как LVDS, USB, HDMI [3-5], широко применяются для минимизации помех и улучшения качества передачи данных. Однако дифференциальный режим работы не исключает возможность возникновения кондуктивных электромагнитных помех, которые могут ухудшать помехозащищенность и влиять на устойчивость функционирования электронных устройств [6].

Существующие методы защиты от ЭМП включают экранирование [7], фильтры [8], газоразрядные устройства [9] и т.д. Экранирование является наиболее распространенным подходом, заключающимся в использовании

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025</u>

проводящих материалов для блокировки внешних электромагнитных полей, однако оно может существенно увеличивать массу и размеры устройства, что не всегда допустимо в компактных электронных устройствах. Фильтры нижних частот эффективно подавляют высокочастотные помехи, но могут вносить потери сигнала и требуют точной настройки. Газоразрядные устройства, применяемые для защиты от мощных перенапряжений, ограничивают их, но обладают сравнительно медленной реакцией и ограниченным сроком службы при многократных воздействиях. Все эти методы в той или иной мере эффективны, однако часто требуют комбинирования для обеспечения комплексной защиты [10].

В последние годы возрастает интерес к использованию полосковых и микрополосковых линий передачи в качестве защитных устройств в электронных системах. Эти линии привлекают внимание благодаря своей простой конструкции, высокой надежности, низкой стоимости, возможности автоматизированного производства, долговечности. К таким устройствам относятся модальные фильтры и меандровые линии, которые функционируют за счет модальных искажений [11-13].

В статье [14] предложен новый способ трассировки микрополосковых линий передачи для повышения устойчивости к сверхширокополосным помехам. В отличие от традиционных методов, где стремятся разнести проводники на максимальное расстояние, предлагается расположить два независимых проводника близко друг к другу. Это приводит к сильной электромагнитной связи между проводниками, за счет чего увеличивается помехоподавляющие свойства. Однако в статье не рассмотрены трассировки для дифференциального и синфазного режимов.

Целью данной работы является анализ влияния различных способов трассировки дифференциальных линий передачи на их способность подавлять кондуктивные ЭМП в дифференциальном и синфазном режимах.

Структуры и помеховые воздействия

В работе исследована линия передачи [15], закрученная в меандр и спираль. На рисунке 1 представлены используемые поперечные сечения и способы трассировки, связанной микрополосковой линии передачи (МПЛ).

Рис. 1. Поперечные сечения для многопроводной (*a*) и связанной (б) МПЛ, а также схемы включения МПЛ в виде спирали (б), (*в*) меандра и прямой (*г*) в дифференциальном и синфазном режимах.

В качестве исследуемого объекта выбрана связанная МПЛ с параметрами: проводников w = 0,17 MM, толщина проводников ширина t = 18 мкм, относительная диэлектрическая проницаемость подложки $\varepsilon_r = 4,5$, тангенс угла $tg_{\delta} = 0,025,$ диэлектрических потерь расстояние между проводниками s = 0,07 мм, расстояние между витками d = 0,35 мм, расстояние от края подложки до проводников составляет 0,51 мм, толщина подложки $H_1 = 0,1$ мм, обшая l = 200 MM. Сопротивление резисторов длина линии ДЛЯ дифференциального режима $R_1 = R_2 = 100$ Ом, а для синфазного $R_1 = R_2 = 25$ Ом.

Моделирование проводилось с учетом потерь в проводниках и диэлектрике. Рассматриваемые схемы трассировки широко применяются в радиотехнических устройствах для передачи сигналов. Прямая трассировка часто используется на коротких участках печатных плат [16]. Меандровая трассировка применяется в линиях задержки для создания необходимой временной задержки сигнала [17]. Спиральная трассировка, являющаяся разновидностью меандра, обеспечивает меньший уровень перекрестных помех, что делает её более предпочтительной в ряде случаев [18].

Следует отметить, что в данной статье рассматривается не только использовании различных помехоподавление при схем трассировки дифференциальных линий передачи, но и изменяется число витков таких линий. На рисунке 2 представлены формы воздействия и их спектры: гауссов импульс (a, b)И затухающая синусоида (б, г). Гауссов импульс является (СШП) ЭМП [19], сверхширокополосной а затухающая синусоида узкополосной (УП) [20].

Рис. 2. Формы ЭДС сигналов СШП (*a*) и УП (*б*) электромагнитных воздействий и их спектральная плотность напряжения (*в*, *г*).

Результаты квазистатического моделирования во временной области

Для анализа временных откликов использованы *N*-нормы. Их расчет основан на применении математических операторов ко всей форме сигнала [21]. В таблице 1 представлено краткое описание *N*-норм.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №4, 2025

N⁰	Формула	Наименование	Обозначение		
N_1	$\left U(t) \right _{\max}$	Пиковое (абсолютное) значение	Сбой схемы / электрический пробой / дуговые эффекты		
N_2	$\left \frac{\delta U(t)}{\delta t} \right _{\max}$	Пиковая (абсолютная) производная	Искрение компонента / сбой схемы		
<i>N</i> ₃	$\left \int_{0}^{t} U(t) dt\right _{\max}$	Пиковый (абсолютный) импульс	Диэлектрический пробой (если U обозначает поле E)		
N_4	$\int_{0}^{\infty} U(t) dt$	Выпрямленный общий импульс	Повреждение оборудования		
N_5	$\left\{\int_{0}^{\infty} \left U(t)\right ^{2} dt\right\}^{1/2}$	Квадратный корень интеграла действия	Выгорание компонента		

Таблица 1. Краткое описание *N*-норм.

На рисунке 3 представлены формы напряжения на выходе дифференциальной линии передачи, закрученной в виде меандра для СШП и УП ЭМП в дифференциальном и синфазном режимах. Легендами обозначены различное число витков меандра.

Рис. 3. Формы напряжения на выходе исследуемой структуры в дифференциальном (*a*, *б*) и синфазном (*b*, *c*) режимах, в виде меандра для СШП (*a*, *b*) и УП (*б*, *c*) ЭМП

Из рисунка *Заб*, видно, что для меандра в дифференциальном режиме, амплитуда СШП ЭМП составляет 124 мВ, а УП – 128 мВ, что в 8,06 и 7,81 раза меньше амплитуды ЭДС, соответственно. Из рисунка *Звг*, видно, что для меандра в синфазном режиме минимальная амплитуда СШП ЭМП составляет 70 мВ, а УП – 81 мВ, что в 14,29 и 12,35 раза меньше амплитуды ЭДС, соответственно. Из этого можно сделать вывод, что трассировка в виде меандра подавляет ЭМП в обоих режимах, однако в синфазном эффективнее.

На рисунке 4 представлены формы напряжения на выходе линии передачи, закрученной в форме спирали для СШП и УП ЭМП в дифференциальном и синфазном режимах.

Рис. 4. Формы напряжения на выходе исследуемой структуры в дифференциальном (*a*, *б*) и синфазном (*b*, *c*) режимах, в виде спирали для СШП (*a*, *b*) и УП (*б*, *c*) ЭМП.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025

Из рисунка 4*аб*, видно, что для трассировки в виде спирали в дифференциальном режиме минимальная амплитуда СШП ЭМП составляет 89 мВ, а УП – 115 мВ, что в 11,24 и 8,7 раза, меньше амплитуды ЭДС, соответственно. Из рисунка 4*вг*, видно, что для трассировки в виде спирали в синфазном режиме минимальная амплитуда СШП ЭМП составляет 46 мВ, а УП 52 мВ, что в 21,74 и 19,23 раза, меньше амплитуды ЭДС, соответственно. Из этого можно сделать вывод, что трассировка в виде спирали подавляет ЭМП в обоих режимах, однако в синфазном эффективнее. На рисунке 5 приведены аналогичные результаты для прямой реализации. В таблице 2 представлены рассчитанные N-нормы для СШП и УП ЭМП.

Рис. 5. Формы напряжения на выходе исследуемой структуры в дифференциальном (*a*) и синфазном (*в*) режимах в прямой реализации для СШП (*a*) и УП (*б*) ЭМП.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025

		СШПЭМП			УП ЭМП						
	Способ трассировки	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{12}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
Дифф. режим	Меандр 5 витков	0,124	2,336	3,215	4,395	1,533	0,128	1,747	1,313	9,626	2,219
	Меандр 7 витков	0,125	2,478	3,218	4,721	1,653	0,174	2,476	1,314	10,530	2,636
	Меандр 9 витков	0,127	2,478	3,218	4,616	1,665	0,134	2,253	1,314	11,91	2,728
	Спираль 5 витков	0,104	1,894	3,219	3,578	1,334	0,124	1,649	1,313	8,916	2,042
	Спираль 7 витков	0,090	1,760	3,220	3,532	1,261	0,115	1,349	1,314	10,390	2,193
	Спираль 9 витков	0,089	1,511	3,218	3,513	1,234	0,120	1,809	1,313	10,06	2,227
	Прямая	0,097	1,953	3,189	2,380	1,145	0,112	1,584	1,310	7,815	1,819
Синф. режим	Меандр 5 витков	0,07	1,157	3,222	4,512	1,082	0,081	1,344	1,314	10,180	1,815
	Меандр 7 витков	0,072	1,448	3,301	4,898	1,273	0,124	1,938	1,317	5,493	1,648
	Меандр 9 витков	0,074	1,358	3,199	4,919	1,335	0,109	1,974	1,131	11,111	2,409
	Спираль 5 витков	0,060	0,786	3,224	4,210	0,915	0,069	1,127	1,314	7,184	1,514
	Спираль 7 витков	0,046	0,650	3,227	3,409	0,765	0,052	0,676	1,315	3,687	0,889
	Спираль 9 витков	0,050	0,872	3,224	3,975	0,927	0,082	1,199	1,314	5,048	1,169
	Прямая	0,075	1,532	2,966	2,065	0,895	0,086	1,381	1,222	6,019	1,404

Таблица 2. Вычисленные *N*-нормы.

Из рисунка 5а видно, что в дифференциальном режиме амплитуда СШП ЭМП составляет 97 мВ, а УП – 112 мВ, что в 10,31 и 8,93 раза, меньше амплитуды ЭДС соответственно. Из рисунка 56 видно, что в синфазном режиме амплитуда СШП ЭМП составляет 75 мВ, а УП – 86 мВ, что в 13,33 и 11,63 раза, меньше амплитуды ЭДС соответственно. Из этого можно сделать вывод, что при прямой реализации линии передачи подавляется ЭМП в обоих режимах, однако в синфазном эффективнее. Из таблицы 2 видно, что в дифференциальном режиме минимальными N_1 и N_2 характеризуется спираль с 9 витками для СШП ЭМП, а для УП – прямая и спираль с 9 витками, соответственно. В синфазном режиме минимальными N_1 и N_2 характеризуется спираль с 7 витками для СШП ЭМП, а для УП – прямая и спираль с 7 витками, соответственно. Из этого следует, что способы трассировки эффективны, синфазном, такие как В так И дифференциальном режимах подавления ЭМП.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025</u>

Результаты электродинамического моделирования в частотной области

Здесь проведено электродинамическое моделирование структур в частотной области. На первом этапе оценены коэффициенты передачи ($|S_{21}|$) и отражения ($|S_{11}|$) от входа. На рисунке 6 представлены частотные зависимости $|S_{21}|$ и $|S_{11}|$ для линии передачи, закрученной в меандр с изменением числа витков, в синфазном и дифференциальном режимах.

Рис. 6. Частотные зависимости $|S_{21}|$ (*a*, *b*) и $|S_{11}|$ (*б*, *г*) для линии передачи, закрученной в меандр с изменением числа витков в дифференциальном (*a*, *б*) и синфазном (*b*, *c*) режимах.

При изменении числа витков сдвигаются резонансные частоты. Из рисунка бб видно, что с ростом числа витков $|S_{11}|$ схемы с меандровой трассировкой для дифференциального режима уменьшается. Рисунок бв показывает, что увеличение числа витков увеличивает резонансные частоты $|S_{21}|$ схемы с меандровой трассировкой в синфазном режиме. Однако из рисунка бг видно, что при увеличении числа витков $|S_{11}|$ схемы с меандровой трассировкой в синфазном режиме остается стабильным в полосе пропускания, но резонансные частоты изменяются. На рисунке 7 представлены частотные зависимости $|S_{21}|$ и $|S_{11}|$ для линии, закрученной в спираль, при изменении числа витков в синфазном и дифференциальном режимах.

Рис. 7. Частотные зависимости $|S_{21}|(a, e)$ и $|S_{11}|(\delta, c)$ для линии, закрученной в спираль с изменением числа витков в дифференциальном (a, δ) и синфазном режимах (e, c).

Из рисунка 7*а* видно, что при увеличении числа витков резонансные частоты $|S_{21}|$ спиральной трассировки в дифференциальном режиме увеличиваются. Из рисунка 7*б* следует, что с ростом числа витков $|S_{11}|$ спиральной трассировки в дифференциальном режиме остается неизменным в полосе пропускания. Рисунок 7*в* показывает, что с ростом числа витков резонансные частоты $|S_{21}|$ спиральной трассировки в синфазном режиме также растут. Однако, как видно из рисунка. 7*г*, с ростом числа витков $|S_{11}|$ спиральной трассировки в синфазном режиме сохраняется в полосе пропускания, но резонансные частоты меняются. На рисунке 8 представлены частотные зависимости |S₂₁| и |S₁₁| для линии передачи прямой реализации структуры в синфазном и дифференциальном режимах.

Рис. 8. Частотные зависимости $|S_{21}|$ и $|S_{11}|$ для дифференциального (*a*) и синфазного (*б*) режимов в прямой реализации.

Из рисунка 8*б* видно, что $|S_{11}|$ в прямой реализации для синфазного режима значительно выше, чем для дифференциального. Из рисунка 8*a* следует, что $|S_{21}|$ в дифференциальном режиме имеет минимальное ослабление на уровне минус 15 дБ, в то время как в синфазном режиме $|S_{21}|$ снижается до минус 18 дБ на частоте 10 ГГц. Для более детального анализа в таблице 3 приведены средние значения $|S_{21}|$ и $|S_{11}|$ для всех структур.

Таблица 3. Средние значения |S₂₁| и |S₁₁| для всех структур на всем частотном диапазоне для дифференциального и синфазного режимов.

	Способ трассировки	S ₂₁ , дБ	S ₁₁ , дБ
	Меандр 5 витков	-10,35	-10,62
ИМ	Меандр 7 витков	-9,82	-16,15
еж	Меандр 9 витков	-9,13	-18,18
Дифф. р	Спираль 5 витков	-10,03	-10,80
	Спираль 7 витков	-9,647	-10,715
	Спираль 9 витков	-10,32	10,883
	Прямая	-9,318	-6,92
	Меандр 5 витков	-15,01	-7,06
ИМ	Меандр 7 витков	-14,64	-7,63
СЖЭ	Меандр 9 витков	-14,24	-8,44
d.	Спираль 5 витков	-10,39	-7,57
Синф	Спираль 7 витков	-11,65	-7,49
	Спираль 9 витков	-11,74	-7,62
	Прямая	-11,6	-3,75

Из таблицы 3 видно, что при изменении режима передачи сигнала с дифференциального на синфазный снижаются средние значения $|S_{21}|$ и $|S_{11}|$ для всех используемых схем трассировки. Соответственно возрастает помехоподавление СШП и УП ЭМП.

Валидация

Для валидации результатов проведено моделирование с использованием двух программных комплексов. Первоначально применялась программа TUSUR.EMC [22] для предварительного анализа в рамках квазистатического моделирования. Вторым инструментом явился Comsol Multiphysics [23], который использовался для электродинамического моделирования. Сравнение представлены на рис. 9 Валидация выполнена для дифференциальной линии передачи с меандровой структурой и 7 витками.

Рис. 9. Частотные зависимости |S₂₁| (*a*) и |S₁₁| (б) для линии передачи, закрученной в меандр с 7 витками в дифференциальном режиме передачи сигнала.

Из рис. 9*а* видно, что частотные зависимости, по Comsol Multiphysics и TUSUR.EMC схожи. Однако повышение общего уровня по TUSUR.EMC объяснимо не учетом потерь в проводниках. Из рис. 9*б* видно, что частотные зависимости, полученные в программах Comsol Multiphysics и TUSUR.EMC, имеют схожий характер. Однако появление резонансов в ПО TUSUR.EMC объяснимо особенностью моделирования.

Заключение

В работе проанализировано влияние способов трассировки линий передачи на их частотные и временные характеристики в дифференциальном и синфазном режимах. Выявлено, что число витков в спиральном и меандровом форму исполнениях влияет на амплитуду И напряжения, как В дифференциальном, так и синфазном режимах. Минимум напряжения для СШП ЭМП достигается в структуре в виде спирали с 9 витками и составляет 0,089 В для дифференциального и 0,046 В для синфазного режимов в структуре в виде спирали из 7 витков. В случае УП ЭМП наибольшее подавление достигается при прямой реализации дифференциальной линии передачи и составляет 0,112 В для дифференциального режима и 0,086 В – для синфазного. Отсюда следует, что для подавления ЭМП в дифференциальном режиме более эффективна структура в виде спирали, а синфазном – прямой реализации.

Выявлено, что число витков в дифференциальной линии передачи, выполненной в спиральной или меандровой конфигурации, не влияет на частоту среза линий. Однако установлено, что число витков влияет на средние значения $|S_{21}|$ и $|S_{11}|$. При этом в синфазном режиме $|S_{11}|$ сохраняет стабильные значения в полосе пропускания для схем трассировки как спирального, так и меандрового типов.

К перспективам дальнейшего исследования можно отнести: исследование других способов трассировки дифференциальных линий передачи и проведение лабораторного эксперимента.

Финансирование: Работа выполнена в рамках проекта FEWM-2024-0005 Минобрнауки России.

Литература

- Medvedev A.V., Zhechev Y.S., Gazizov T.R. Experimental study of a structure with single modal reservation before and after failure // IEEE Transactions on Electromagnetic Compatibility. – 2022. – T. 64. – №. 4. – P. 1171-1181.
- Li W. et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment // IEEE Transactions on Electromagnetic Compatibility. – 2017. – T. 60. – №. 2. – P. 520-528.
- Zou M. et al. Multi-bus protocol Controller Based on SpaceWire // 2022 International SpaceWire & SpaceFibre Conference (ISC). – IEEE, 2022. – C. 01-04.
- Xu Y. et al. SEED modeling of an ESD gun discharge to a USB cable surrogate // 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. – IEEE, 2021. – P. 1159-1164.
- Hilavin S. et al. Analysis of repeatability and uncertainty issues in radiated emission tests regarding HDMI ports // 2016 International Symposium on Electromagnetic Compatibility-EMC EUROPE. – IEEE, 2016. – P. 61-65.
- Wang X., Fang Y. Design of Wideband Filtering Balanced-to-Unbalanced In-Phase Power Divider with High Common-Mode Suppression // 2021 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). – IEEE, 2021. – P. 1-3.
- 7. Özkök M. et al. Adjustable EMI Shielding on Electronic Packages Realized by Electrolytic Plating // 2019 IEEE CPMT Symposium Japan (ICSJ). – IEEE, 2019.
 – P. 191-194.
- Костелецкий В.П. Обзор гибридных фильтров для защиты радиоэлектронных средств от кондуктивных помех // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2022. – Т. 25. – №. 1. – С. 37-47.
- Капура И.А., Бакуменко Б.В. Анализ методов и средств защиты радиоэлектронной аппаратуры от воздействия мощных электромагнитных излучений // Системи обробки інформації. – 2010. – №. 6. – С. 87-90.

- Терентьев Д.Е., Сторожук Н.Л. Защита оборудования и объектов связи от опасных электромагнитных влияний // Информация и космос. – 2004. – №. 3. – С. 38-45.
- Ivantsov I.A., Mikola P.V., Surovtsev R.S. Reflections in a Meander Line Turn of Two Segments as a Resource for Suppressing UWB Excitations // 2023 IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM). – IEEE, 2023. – P. 410-413.
- Samoylichenko M.A., Zhechev Y.S., Gazizov T.R. Signal Integrity Analysis of Modal Filters Formed by Modification of Microstrip Lines and Coplanar Waveguides // IEEE Electromagnetic Compatibility Magazine. – 2024. – T. 13. – №. 1. – P. 35-41.
- 13. Sagiyeva I.Y. et al. Modal filter based on a microstrip line with two side conductors grounded at both ends // IEEE Transactions on Electromagnetic Compatibility. 2023. T. 65. №. 5. P. 1371-1378.
- Zhechev Y.S. et al. Routing technique for microwave transmission lines to ensure UWB interference immunity // IEEE Transactions on Microwave Theory and Techniques. – 2023. – T. 71. – №. 12. – P. 5304-5316.
- Vlasov S.V., Zhechev Y.S. Characteristics of Coupled Differential Pairs from the Perspective of Increasing their Immunity to Intentional Electromagnetic Interference // 2024 International Russian Automation Conference (RusAutoCon). – IEEE, 2024. – P. 623-627.
- 16. Попов Ю.И., Попов С.И. Вычисление минимального по длине пути проводника в топологической трассировке печатного монтажа // Научнотехнический вестник информационных технологий, механики и оптики. – 2012. – №. 6 (82). – С. 117-122.
- 17. Lee C.A. et al. Delay-Matching Routing for Advanced Packages // 2023
 IEEE/ACM International Conference on Computer Aided Design (ICCAD).
 IEEE, 2023. P. 1-8.

- Wu R.B., Chao F.L. A new flat spiral routing to minimize crosstalk penalty in delay line // Proceedings of Electrical Performance of Electronic Packaging. – IEEE, 1995. – C. 203-206.
- Compatibility E. Part 1–5: High Power Electromagnetic (HPEM) Effects on Civil Systems // Standard IEC. – 2004. – P. 61000-1.
- Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, MIL-STD-461F, Interface Standard. – 2007.
- 21. Baum C.E. Norms and eigenvector norms // Mathematics Notes. 1979. T. 63.
 P. 1-42.
- 22. Куксенко С.П. и др. Новые возможности системы моделирования электромагнитной совместимости TALGAT // Доклады Томского государственного университета систем управления и радиоэлектроники. 2015. №. 2 (36). С. 45-50.
- 23. Zimmerman W.B.J. Introduction to COMSOL multiphysics // Multiphysics modeling with finite element methods. 2006. P. 1-26.

Для цитирования:

Власов С.В., Мурманский М.С., Жечев Е.С. Исследование влияния способов трассировки дифференциальных линий передачи на их помехоустойчивость // Журнал радиоэлектроники. – 2025. – №. 4. https://doi.org/10.30898/1684-1719.2025.4.13