Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹4
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.4.14
TOPOLOGICAL PROPERTIES OF SINGLE CRYSTALS
OF SOLID SOLUTION (Cd1-xZnx)3As2 Composition x = 0.093
V.S. Zakhvalinskii1, A.V. Borisenko1,5, A.V. Mashirov2, A.V. Kochura3, V.V. Sobolev4
1Belgorod State National Research University
308015, Russia, Belgorod, Pobeda str., 852Kotelnikov IRE RAS
125009, Russia, Moscow, Mokhovaya str., 11, b.73Southwestern State University
305040, Russia, Kursk, 50th Anniversary of October str., b. 944Kalashnikov Izhevsk State Technical University,
308034, Russia, Izhevsk, Studencheskaya str., 55Putilin Belgorod Law Institute of Ministry of the Interior of Russia,
308024, Russia, Belgorod, Gorky, str., 71
The paper was received March 21, 2025.
Abstract. The value of the cyclotron mass is determined in single crystals of a solid solution (Cd0.907Zn0.093)3As2 according to the results of a study of Shubnikov-de Haase oscillations in a transverse magnetic field. We compared the Shubnikov and Hall parameters of charge carriers. We have found a weak dependence of the cyclotron mass on the magnetic field. The parameters of charge carrier dynamics, such as concentration, Fermi wave vector, charge carrier relaxation time, velocity of charge carriers on the Fermi surface, and average free path of charge carriers were determined. We have determined the value of the Dingle temperature TD = 21.2 K. We have established that the dependence of the cyclotron mass on the Fermi wave vector kF, obtained from experimentally observed Shubnikov-de Haase oscillations, agrees well with the linear dependence predicted by the theory. The dependence of the cyclotron mass on the Fermi wave vector kF and the appearance of the Landau fan diagram indicate the presence of Dirac fermions with near-zero effective mass in single crystals (Cd0.907Zn0.093)3As2.
Key words: Shubnikov-de Haase effect, Dirac fermions, zinc arsenide, cadmium arsenide.
Corresponding author: Borisenko Alexander Vasilyevich, borisenko02.94@mail.ru
References
1. Wieder B. J. et al. Topological materials discovery from crystal symmetry //Nature Reviews Materials. – 2022. – Ò. 7. – ¹. 3. – Ñ. 196-216. https://doi.org/10.1038/s41578-021-00380-2
2. Crassee I. et al. 3D Dirac semimetal Cd 3 As 2: A review of material properties //Physical Review Materials. – 2018. – Ò. 2. – ¹. 12. – Ñ. 120302. https://doi.org/10.1103/PhysRevMaterials.2.120302
3. Ali M. N. et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene //Inorganic chemistry. – 2014. – Ò. 53. – ¹. 8. – Ñ. 4062-4067. https://doi.org/10.1021/ic403163d
4. Neupane M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 //Nature communications. – 2014. – Ò. 5. – ¹. 1. – Ñ. 3786. https://doi.org/10.1038/ncomms2191
5. Borisenko S. et al. Experimental realization of a three-dimensional Dirac semimetal //Physical review letters. – 2014. – Ò. 113. – ¹. 2. – Ñ. 027603. https://doi.org/10.1103/PhysRevLett.113.027603
6. Mitra A. et al. Constraints on proximity-induced ferromagnetism in a Dirac semimetal (Cd 3 As 2)/ferromagnetic semiconductor (Ga 1− x Mn x Sb) heterostructure //Physical Review Materials. – 2023. – Ò. 7. – ¹. 9. – Ñ. 094201. https://doi.org/10.1103/PhysRevMaterials.7.094201
7. Liang T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd 3 As 2 //Nature materials. – 2015. – Ò. 14. – ¹. 3. – Ñ. 280-284. https://doi.org/10.1038/nmat4143
8. Singh A. et al. Ultrahigh Carrier Mobility in Cd3As2 Nanowires //physica status solidi (RRL)–Rapid Research Letters. – 2023. – Ò. 17. – ¹. 2. – Ñ. 2200365. https://doi.org/10.1002/pssr.202200365
9. Rice A. D. et al. High mobility Cd3As2 (112) on GaAs (001) substrates grown via molecular beam epitaxy //ACS Applied Electronic Materials. – 2022. – Ò. 4. – ¹. 2. – Ñ. 729-734. https://doi.org/10.1021/acsaelm.1c01126
10. Jeon S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 //Nature materials. – 2014. – Ò. 13. – ¹. 9. – Ñ. 851-856. https://doi.org/10.1038/nmat4023
11. Nelson J. N. et al. Direct link between disorder and magnetoresistance in topological semimetals //Physical Review B. – 2023. – Ò. 107. – ¹. 22. – Ñ. L220206. https://doi.org/10.1103/PhysRevB.107.L220206
12. Ouyang W. et al. Extraordinary Thermoelectric Properties of Topological Surface States in Quantum‐Confined Cd3As2 Thin Films //Advanced Materials. – 2024. – Ò. 36. – ¹. 28. – Ñ. 2311644. https://doi.org/10.1002/adma.202311644
13. Akrap A. et al. Magneto-optical signature of massless Kane electrons in Cd 3 As 2 //Physical review letters. – 2016. – Ò. 117. – ¹. 13. – Ñ. 136401. https://doi.org/10.1103/PhysRevLett.117.136401
14. Chorsi H. T. et al. Widely tunable optical and thermal properties of Dirac semimetal Cd3As2 //Advanced Optical Materials. – 2020. – Ò. 8. – ¹. 8. – Ñ. 1901192. https://doi.org/10.1002/adom.201901192
15. Gao J. et al. Surface reconstruction, oxidation mechanism, and stability of Cd3As2 //Advanced Functional Materials. – 2019. – Ò. 29. – ¹. 26. – Ñ. 1900965. https://doi.org/10.1002/adfm.201900965
16. Ivanov V. et al. Absence of backscattering in Fermi-arc mediated conductivity of the topological Dirac semimetal Cd 3 As 2 //Physical Review B. – 2024. – Ò. 109. – ¹. 19. – Ñ. 195139. https://doi.org/10.1103/PhysRevB.109.195139
17. Rancati A. et al. Impurity-induced topological phase transitions in Cd 3 As 2 and Na 3 Bi Dirac semimetals //Physical Review B. – 2020. – Ò. 102. – ¹. 19. – Ñ. 195110. https://doi.org/10.1103/PhysRevB.102.195110
18. Lygo A. C. et al. Two-dimensional topological insulator state in cadmium arsenide thin films //Physical Review Letters. – 2023. – Ò. 130. – ¹. 4. – Ñ. 046201. https://doi.org/10.1103/PhysRevLett.130.046201
19. Galeeva A. V. et al. Electron energy relaxation under terahertz excitation in (Cd1− xZnx) 3As2 Dirac semimetals //Beilstein Journal of Nanotechnology. – 2017. – Ò. 8. – ¹. 1. – Ñ. 167-171. https://doi.org/10.3762/bjnano.8.17
20. Singh M. et al. Topological nature of large bulk band gap materials Sr3Bi2 and Ca3Bi2 //Physica Scripta. – 2023. – Ò. 98. – ¹. 3. – Ñ. 035813. https://doi.org/10.1088/1402-4896/acb7b3
21. Zhang X. et al. Three-dimensional Dirac semimetal (Cd1− x Zn x) 3As2/Sb2Se3 back-to-back heterojunction for fast-response broadband photodetector with ultrahigh signal-to-noise ratio //Science China Materials. – 2023. – Ò. 66. – ¹. 4. – Ñ. 1484-1493. https://doi.org/10.1007/s40843-022-2270-1
22. Brooks C., Lany S. Heterostructural alloy phase diagram for (Cd 1− x Zn x) 3 As 2 //Physical Review Materials. – 2024. – Ò. 8. – ¹. 6. – Ñ. L061201. https://doi.org/10.1103/PhysRevMaterials.8.L061201
23. Zakhvalinskii V. et al. Two-Dimensional Surface Topological Nanolayers and Dirac Fermions in Single Crystals of the Diluted Magnetic Semiconductor (Cd1− x− y Zn x Mn y) 3As2 (x+ y= 0.3) //Crystals. – 2020. – Ò. 10. – ¹. 11. – Ñ. 988. https://doi.org/10.3390/cryst10110988
24. Zakhvalinskii V. S. et al. Transport evidence of mass-less Dirac fermions in (Cd1− x− yZnxMny) 3As2 (x+ y= 0.4) //Materials Research Express. – 2020. – Ò. 7. – ¹. 1. https://doi.org/10.1088/2053-1591/ab688b
25. Novoselov K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene //nature. – 2005. – Ò. 438. – ¹. 7065. – Ñ. 197-200. https://doi.org/10.1038/nature04233
26. Lahoud E. et al. Evolution of the Fermi surface of a doped topological insulator with carrier concentration //Physical Review B—Condensed Matter and Materials Physics. – 2013. – Ò. 88. – ¹. 19. – Ñ. 195107. https://doi.org/10.1103/PhysRevB.88.195107
27. Lawson B. J. et al. Quantum oscillations in Cu x Bi 2 Se 3 in high magnetic fields //Physical Review B. – 2014. – Ò. 90. – ¹. 19. – Ñ. 195141. https://doi.org/10.1103/PhysRevB.90.195141
28. Kraus W., Nolze G. Windows version of PowderCell 1.0, a program for manipulation of crystal structures and calculation of the corresponding powder diffraction patterns //J. Appl. Crystallogr. – 1996. – Ò. 29. – Ñ. 301. https://doi.org/10.1107/S0021889895014920
29. Arushanov E. K. Crystal growth and characterization of II3V2 compounds //Progress in crystal growth and characterization. – 1980. – Ò. 3. – ¹. 2-3. – Ñ. 211-255. https://doi.org/10.1016/0146-3535(80)90020-9
30. Pietraszko A., Łukaszewicz K. Thermal expansion and phase transitions of Cd3As2 and Zn3As2 //physica status solidi (a). – 1973. – Ò. 18. – ¹. 2. – Ñ. 723-730. https://doi.org/10.1002/pssa.2210180234
31. Marenkin S. F., Trukhan V. M. Fosfidy, arsenidy tsinka i kadmiya //Minsk: Varaskin. – 2010.
32. Ril' A. I. i dr. FAZOVYE RAVNOVESIYA V TROINOI SISTEME CdAs 2-Cd 3 As 2-MnAs //Zhurnal neorganicheskoi khimii. – 2017. – T. 62. – ¹. 7. – S. 977-987 https://doi.org/10.7868/S0044457X17070200
33. Zakhvalinskii V. S. et al. Linear dispersion of Dirac fermions in (Cd1–x–yZnxMny) 3As2, õ+ y= 0.2, ó= 0.02, 0.04, 0.06, 0.08 solid solutions //Physica Scripta. – 2021. – Ò. 96. – ¹. 12. – Ñ. 125856. https://doi.org/10.1088/1402-4896/ac3873
34. Marenkin S. F. et al. Formation of the α''-phase and study of the solubility of Mn in Cd3As2 //Journal of Alloys and Compounds. – 2022. – Ò. 892. – Ñ. 162082. https://doi.org/10.1016/j.jallcom.2021.162082
35. Allmann R., Hinek R. The introduction of structure types into the Inorganic Crystal Structure Database ICSD //Foundations of Crystallography. – 2007. – Ò. 63. – ¹. 5. – Ñ. 412-417. http://doi.org/10.1107/S0108767307038081
36. Dean J. A. Lange's handbook of chemistry. – 1999.
37. Ivanov O. et al. Asymmetry and parity violation in magnetoresistance of magnetic diluted Dirac–Weyl semimetal (Cd0. 6Zn0. 36Mn0. 04) 3As2 //physica status solidi (RRL)–Rapid Research Letters. – 2018. – Ò. 12. – ¹. 12. – Ñ. 1800386. https://doi.org/10.1002/pssr.201800386
38. Li C. Z. et al. Two-carrier transport induced Hall anomaly and large tunable magnetoresistance in Dirac semimetal Cd3As2 nanoplates //ACS nano. – 2016. – Ò. 10. – ¹. 6. – Ñ. 6020-6028. https://doi.org/10.1021/acsnano.6b01568
39. Chen Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator //Science. – 2010. – Ò. 329. – ¹. 5992. – Ñ. 659-662. https://doi.org/10.1126/science.1189924
40. Shikin A. M. Priroda otkrytiya i modifikatsii dirakovskoi shcheli v aksionnom antiferromagnitnom topologicheskom izolyatore MnBi _2 Te _4 //Fizika tverdogo tela. – 2020. – T. 62. – ¹. 8. – S. 1293-1301. https://doi.org/10.21883/FTT.2020.08.49617.068
41. Zhao Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd 3 As 2 //Physical Review X. – 2015. – Ò. 5. – ¹. 3. – Ñ. 031037. https://doi.org/10.1103/PhysRevX.5.031037
42. Guo S. T. et al. Large transverse Hall-like signal in topological Dirac semimetal Cd3As2 //Scientific reports. – 2016. – Ò. 6. – ¹. 1. – Ñ. 27487. https://doi.org/10.1038/srep27487
43. Pariari A. et al. Tuning the scattering mechanism in the three-dimensional Dirac semimetal Cd 3 As 2 //Physical Review B. – 2016. – Ò. 94. – ¹. 16. – Ñ. 165139. https://doi.org/10.1103/PhysRevB.94.165139
44. Tsidil'kovskii I. M. Zonnaya struktura poluprovodnikov. – Nauka. Gl. red. fiz.-mat. lit., 1978.
45. Zakhvalinskii V. S. et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1− x− yZnxMny) 3As2 solid solutions //Journal of Physics: Condensed Matter. – 2017. – Ò. 29. – ¹. 45. – Ñ. 455701. https://doi.org/10.1088/1361-648X/aa8bdb
46. Laiho R. et al. Shubnikov-de Haas effect in thermally annealed (Cd1− x− yZnxMny) 3As2 //Journal of Physics and Chemistry of Solids. – 1997. – Ò. 58. – ¹. 5. – Ñ. 717-724. https://doi.org/10.1016/S0022-3697(96)00194-1
47. Laiho R. et al. Shubnikov‐de Haas Effect in (Cd1− x− yZnxMny) 3As2 under Pressure //physica status solidi (b). – 1996. – Ò. 198. – ¹. 1. – Ñ. 135-141. https://doi.org/10.1002/pssb.2221980119
48. Petrushevsky M. et al. Probing the surface states in Bi 2 Se 3 using the Shubnikov–de Haas effect //Physical Review B—Condensed Matter and Materials Physics. – 2012. – Ò. 86. – ¹. 4. – Ñ. 045131. https://doi.org/10.1103/PhysRevB.86.045131
49. Lawson B. J., Hor Y. S., Li L. Quantum oscillations in the topological superconductor candidate Cu 0.25 Bi 2 Se 3 //Physical Review Letters. – 2012. – Ò. 109. – ¹. 22. – Ñ. 226406. https://doi.org/10.1103/PhysRevLett.109.226406
50. Murakawa H. et al. Detection of Berry’s phase in a bulk Rashba semiconductor //Science. – 2013. – Ò. 342. – ¹. 6165. – Ñ. 1490-1493. https://doi.org/10.1126/science.1242247.
51. Xiang Z. J. et al. Angular-dependent phase factor of Shubnikov–de Haas oscillations in the Dirac semimetal Cd 3 As 2 //Physical review letters. – 2015. – Ò. 115. – ¹. 22. – Ñ. 226401. http://doi.org/10.1103/PhysRevLett.115.226401
For citation:
Zakhvalinskii V.S., Borisenko A.V., Mashirov A.V., Kochura A.V., Sobolev V.V. Topological properties of single crystals of solid solution (Cd1-xZnx)3As2 composition X = 0.093. // Journal of Radio Electronics. – 2025. – ¹. 4. https://doi.org/10.30898/1684-1719.2025.4.14 (In Russian)