

DOI: https://doi.org/10.30898/1684-1719.2025.4.7 УДК: 621.382.029

МОДЕЛИРОВАНИЕ ТЕПЛОВЫХ ХАРАКТЕРИСТИК ВЫСОКОТЕМПЕРАТУРНЫХ МОНОЛИТНЫХ ИНТЕГРАЛЬНЫХ СХЕМ С НЕОДНОРОДНЫМ РАСПРЕДЕЛЕНИЕМ ИСТОЧНИКОВ ТЕПЛОВЫДЕЛЕНИЯ В КРИСТАЛЛЕ

И.В. Фролов¹, А.М. Ходаков¹, В.А. Сергеев^{1,2}, Д.В. Клейменкин³

¹ Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова Российской академии наук 432071, Ульяновск, ул. Гончарова, 48/2

² Ульяновский государственный технический университет, 432027, г. Ульяновск, ул. Северный венец, д. 32

³ Донской государственный технический университет 344000, Ростов-на-Дону, площадь Гагарина, 1

Статья поступила в редакцию 13 января 2025 г.

Аннотация. Разработана 3D тепловая модель монолитной интегральной схемы (МИС) СВЧ усилителя мощности, которая является основой современных субмодулей выходных усилителей мощности приемо-передающих модулей активных фазированных антенных решеток. Моделируемая МИС состоит из трех каскадов усилителей мощности, общая рассеиваемая кристаллом тепловая мощность составляет 6 Вт и распределена между усилительными каскадами МИС в пропорции 1:2:12. Активные элементы (транзисторы) МИС – основные дискретные источники тепла – распределены неоднородно по кристаллу МИС. Путем компьютерного моделирования в программной среде Comsol Multiphysics показано, что при увеличении температуры окружающей среды от 300 до 600 К максимальная температура перегрева кристалла МИС из арсенида галлия (GaAs) увеличивается от 38 до 84 К,

а кристалла МИС из нитрида галлия (GaN) – от 18 до 47 К. На основе принципа электротепловой аналогии, согласно которой источники выделяемой тепловой мощности представляются источниками электрического тока, а тепловые сопротивления элементов конструкции объекта – электрическими сопротивлениями, разработана тепловая эквивалентная схема МИС. Показано удовлетворительное соответствие (в пределах 10 %) результатов определения максимальной температуры перегрева как GaAs, так и GaN кристаллов МИС путем компьютерного 3D моделирования и путем расчета по тепловой эквивалентной схеме. Разработанные модели могут быть использованы при проектировании высокотемпературных интегральных микросхем, в том числе, с неоднородным расположением источников тепла в кристалле.

Ключевые слова: монолитная интегральная схема, 3D тепловая модель, нитрид галлия, арсенид галлия, тепловая эквивалентная схема, температура перегрева кристалла.

Финансирование: исследование выполнено за счет гранта Российского научного фонда № 23-79-10069, https://rscf.ru/project/23-79-10069/.

Автор для переписки: Фролов Илья Владимирович, info@ulireran.ru

Введение

Высокотемпературные интегральные микросхемы (ИМС), сохраняющие работоспособность при температуре более 150 °C, находят применение во многих областях промышленности: аэрокосмическом, авиационном и автомобильном приборостроении, электроэнергетике. В настоящее время зарубежные серийно предприятия выпускают несколько типов высокотемпературных аналоговых и аналого-цифровых ИМС на основе кремниевых структур. В России также разработаны высокотемпературные кремниевые операционные усилители и аналого-цифровые преобразователи. Однако максимальная рабочая температура таких изделий не превышает 200 °C из-за наличия ограничений кремниевых технологий. По этой причине в качестве полупроводников, предназначенных для высокотемпературных ИМС, применяют

нитрид галлия (GaN) и арсенид галлия (GaAs), которые имеют широкую запрещенную зону, большую скорость насыщения электронов и низкую концентрацию собственных носителей заряда [1,2]. Материал GaAs традиционно используется для изготовления мощных CBЧ-транзисторов и монолитных усилителей мощности, в то время как ИМС на основе GaN только начинают широко применяться в современных электронных изделиях, но обещают большие перспективы [3,4]. При экстремальных температурах отвод тепла от активной области прибора является первоочередной задачей, которая решается путем оптимизации конструкции и применением новых материалов с улучшенными теплопроводящими свойствами [5].

Для определения тепловых режимов работы электронных изделий с применением ИМС необходимо построение адекватной тепловой модели ИМС и расчет температуры нагрева ИМС при различных значениях рассеиваемой мощности и условиях теплоотвода. Определение тепловых режимов работы ИМС критически важно для обеспечения работоспособности и надежности всего изделия. Задача усложняется тем, что современные ИМС имеют сложную структуру, работают при высоких температурах внешней среды и плотностях теплового потока [6,7], при которых проявляются нелинейные тепловые эффекты. В ранее разработанных тепловых моделях высокотемпературных ИМС [8,9] не учитывалось дискретное распределение источников тепла по кристаллу и указанные выше нелинейные эффекты не рассматривались, в частности не учитывалось влияние температуры внешней среды на тепловой режим работы ИМС. В настоящей работе представлены результаты моделирования тепловых характеристик монолитной интегральной схемы (МИС) СВЧ-усилителя мощности на основе GaAs и GaN в диапазоне температур окружающей среды 300-600 К.

1. Компьютерное моделирование

В качестве объекта для проведения расчетных исследований была выбрана МИС СВЧ-усилителя мощности, аналогичная рассмотренной в [8,9], которая является основой современных субмодулей выходных усилителей мощности приемо-передающих модулей активных фазированных антенных решеток. Геометрия тепловой модели МИС представлена на рисунке 1 и состоит из кристалла GaAs или GaN со сторонами $l_{1x} \times l_{1y} = 4.3 \times 5.0$ мм и толщиной $l_{1z} = 0.1$ мм, закрепленного с помощью слоя адгезива толщиной $l_{4z} = 15$ мкм на медной теплоотводящей пластине, и основания корпуса размерами $l_{3x} \times l_{3y} \times l_{3z} = 6.5 \times 6.5 \times 0.5$ МИС В прототипа корпуса В модели MM. качестве использовался металлокерамический корпус для монолитных интегральных и гибридных схем СВЧ с габаритными размерами $l_{2x} \times l_{2y} \times l_{2z} = 7.6 \times 7.6 \times 1.6$ мм, изготовленный из керамики ВК-96 [10].

Рис. 1. Схема тепловой модели микросхемы: 1 – кристалл, 2 – корпус, 3 – основание корпуса, 4 – слой адгезива; красным цветом обозначено положение тепловых источников.

Положение усилительных каскадов и активных элементов (транзисторов), являющихся основными источниками тепла на поверхности кристалла МИС, обозначено красным цветом. Общая рассеиваемая кристаллом тепловая мощность составляет P = 6 Вт и распределена между усилительными каскадами МИС

в пропорции 1:2:12. Пространство между кристаллом и корпусом микросхемы заполнено компаундом.

Математическая тепловая модель ИМС состоит из стационарного уравнения теплопроводности:

$$div(\lambda_i(T_i)gradT_i(x, y, z)) = 0,$$

 $i = 1, 2, 3, 4,$
(1)

где λ_i – коэффициенты теплопроводности *i*-го элемента конструкции МИС соответственно.

На верхней поверхности кристалла МИС задается условие:

$$-\lambda_{1}(T_{1})\frac{\partial T_{1}}{\partial z}\Big|_{z=z_{0}} = \begin{cases} P_{k} / S_{k}, (x, y) \in S_{k}, \\ 0, (x, y) \in (S_{0} - S_{k}), \end{cases}$$
(2)

где T_0 – температура окружающей среды, k – номер расположения источника тепла в каскадах усиления, S_0 , S_k – площади верхней поверхности кристалла и k-го теплового источника, $z_0 = l_{z1} + l_{z2}$.

На всех внешних поверхностях П_i конструкции МИС, кроме нижней, выполняются условия естественного теплообмена:

$$\lambda_{i} T_{i_{z}} \Big|_{\Pi_{i}} + \alpha_{n} \Big(T_{i} \Big|_{\Pi_{i}} - T_{0} \Big) = 0, \qquad (3)$$

с коэффициентом теплообмена $\alpha_n = 10$ Вт/м/К.

Температура нижней поверхности основания корпуса равна температуре окружающей среды (идеальный теплоотвод):

$$T_3(x, y, 0) = T_0. (4)$$

Для всех контактных областей структуры с различными теплофизическими параметрами задаются стандартные тепловые условия сопряжения [11].

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025</u>

Расчет температурных полей проводился с использованием программной среды Comsol Multiphysics с заданным распределением источников тепла в активной области МИС и с учетом температурной зависимости теплофизических параметров материалов [1,12]. Зависимость коэффициента теплопроводности материала кристалла λ_1 от температуры кристаллической решетки согласно [1] определяется выражением:

$$\lambda_1(T) = \lambda_1(300) \left(\frac{T}{300}\right)^a,\tag{5}$$

где для GaAs $\lambda_1(300) = 40$ Вт/м/К, a = -1.25, а для GaN $\lambda_1(300) = 125$ Вт/м/К, a = -0.43 Графики температурных зависимостей (5) для GaN и GaAs приведены на рисунке 2.

Рис. 2. Температурное изменение коэффициента теплопроводности материала кристалла.

На рисунке 3 изображены расчетные результаты температурного распределения по поверхности корпуса (а) и по верхней поверхности кристалла (б) МИС на основе GaAs.

Рис. 3. Температурное поле МИС на основе арсенида галлия.

Расчетные исследования влияния температуры T_0 внешней среды на тепловой режим работы МИС с кристаллами из различных материалов при изменении T_0 в пределах от 300 К до 600 К показали, что в рассмотренном диапазоне значений температуры внешней среды зависимости максимального перегрева ΔT_m кристаллов МИС от температуры T_0 имеют существенно нелинейный характер (рис. 4), при этом максимальный перегрев GaAs кристалла примерно в 2 раза больше максимального перегрева GaN кристалла.

Рис. 4. Зависимость максимального перегрева кристалла МИС от температуры внешней среды.

2. Тепловая эквивалентная схема МИС

Тепловая эквивалентная схема МИС разработана на основе принципа электротепловой аналогии, согласно которому ток в цепях электрической схемы эквивалентен тепловому потоку, а потенциал элементов относительно общей точки – температуре элементов. Источник тока в такой схеме – это источник теплового потока, электрические сопротивления – тепловые сопротивления элементов конструкции, электрические емкости – их теплоемкости.

При разработке тепловой эквивалентной схемы МИС предполагалось, что тепло, выделяемое транзисторами, распространяется через кристалл МИС, адгезив и через медную пластину к радиатору (идеальному теплоотводу); часть тепла распространяется вдоль медной пластины, создавая тепловую связь между транзисторами. Все тепло, выделяемое в кристалле МИС, передается в окружающую среду через нижнюю поверхность медной пластины. Этот процесс теплопереноса можно представить эквивалентной электрической схемой, изображенной на рисунке 5.

Рис. 5. Тепловая эквивалентная схема монолитной интегральной схемы.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025

В этой схеме источники греющей мощности (транзисторы) первого усилительного каскада представляются источниками тока I1-I2, источники тепла второго каскада представлены источниками тока I3-I6, а источник тепла третьего каскада – одним источником тока I7. Соответственно, тепловые сопротивления областей кристалла МИС, в которых расположены перечисленные выше источники греющей мощности, представлены резисторами R1-R7, тепловые сопротивления слоя адгезива – резисторами R8-R14, тепловые сопротивления медной пластины – резисторами R15-R21. Передача тепла по медной пластине между транзисторами второго каскада определяется резисторами R22-R24, а передача тепла между транзисторами первого и второго, второго и третьего каскадов – резисторами R25-R32; как показали оценки и результаты компьютерного моделирования тепловой связью между транзисторами первого каскада можно пренебречь.

Для расчета теплового сопротивления элементов многослойной конструкции, в которой тепловой поток распространяется от источника тепла к основанию, используется метод эквивалентов [13]. Тепловую модель области МИС, расположенной под источником тепла, представим в виде многослойной конструкции, состоящей из кристалла, слоя адгезива и медного основания корпуса (рис. 6). Источник тепла размерами *а×b* расположен на поверхности кристалла, при этом полагают, что поверхность источника тепла и основания корпуса изотермичны. Угол расхождения теплового потока в слое конструкции зависит от отношения размера источника тепла к толщине слоя: если отношение много меньше 1, то оптимальный угол расхождения порядка 30°; если отношение больше 1, то оптимальный угол расхождения порядка 45° [13]. В тепловой модели, геометрия которой представлена на рис. 6, угол расхождения теплового потока в кристалле и слое адгезива принят равным 30°, а в медном основании корпуса – 45°. На рис. 6 приняты обозначения: d_{KP} – толщина кристалла; d_{AII} – толщина слоя адгезива; d_{III} – толщина медной пластины; *а*×*b* – размеры источника тепла. Размеры источников тепла первого каскада

усиления составляют 300×200 мкм, второго каскада – 500×200 мкм, третьего каскада – 3900×200 мкм.

Рис. 6. Геометрия тепловой модели отдельного источника тепла МИС: 1 – источник тепла; 2 – кристалл МИС; 3 – слой адгезива; 4 – медная пластина.

Для модели с одним источником тепла тепловое сопротивление слоя конструкции находится путем интегрирования выражения [14]:

$$R_T = \int_0^d \frac{d\xi}{\lambda S(\xi)},\tag{6}$$

где λ – теплопроводность материала слоя конструкции; *S* – площадь источника тепла.

Для источника тепла прямоугольной формы размером $a \times b$ с учетом растекания теплового потока в слое конструкции под углом Θ тепловое сопротивление рассчитывается по формуле:

$$R_{T} = \frac{\ln\left(\frac{b+2d \times tg\Theta}{a+2d \times tg\Theta}\frac{a}{b}\right)}{2\lambda(a-b)tg\Theta}.$$
(7)

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №4, 2025</u>

Результаты расчета теплового сопротивления кристалла тепловому потоку источников тепла трех каскадов усилителя приведены в таблице 1.

Таблица 1. Значения тепловых сопротивлений источников тепла в кристалле МИС при T = 300 К.

Материал кристалла	Первый каскад усиления R ₁ , R ₂ ,	Второй каскад усиления R ₃ -R ₆ ,	Третий каскад усиления R ₇ ,
GaAs	<u>K/BT</u> 28,2	К/Вт 17,9	2,5
GaN	9,0	5,7	0,8

Результаты расчета теплового сопротивления слоя адгезива, коэффициент теплопроводности которого равен $\lambda_2 = 3 \text{ Br/(M} \times \text{K})$ [8], и медной пластины приведены в таблице 2. При расчетах коэффициент теплопроводности меди принимался равным $\lambda_3 = 390 \text{ Br/(M} \times \text{K})$.

Таблица 2. Значения сопротивлений тепловой эквивалентной схемы МИС.

	Тепловое сопротивления слоя конструкции МИС, К/Вт			
	Первый каскад	Второй каскад	Третий каскад	
	усиления	усиления	усиления	
Слой адгезива	36,4	24,7	3,8	
Слой медной	22	1,8	0,4	
пластины	2,3			

Значения тепловых сопротивлений R22–R32 передачи тепла по медной пластине между транзисторами, которые приближенно оценивались по формуле:

$$R_{T_i} = \frac{l_i}{\lambda_3 b_i d_{\Pi \Pi}},\tag{8}$$

где l_i – расстояние между транзисторами *i*-й пары, b_i – размер источника тепла *i*-й пары, составили от 5 до 10 К/Вт.

Результаты моделирования на основании тепловой эквивалентной схемы и моделирования в Comsol для GaAs микросхемы приведены в таблице 3. Максимальное значение температуры перегрева достигается в третьем каскаде усиления. Различия в значениях максимальной температуры перегрева, полученных разными методами, составляет порядка 10% и объясняется приближениями моделей. Для объяснения существенного расхождения значений

температуры второго каскада необходим более корректный учет влияния соседних каскадов и расчет перекрестных тепловых сопротивлений.

			11	
	Температура перегрева транзисторов, К			
	Первый каскад	Второй каскад	Третий каскад	
	усиления	усиления	усиления	
Компьютерное	15.8	15.6	35.0	
моделирование	13,8	15,0	55,0	
Моделирование на	13,8	9,4	31,5	
основе тепловой				
эквивалентной схемы				

Таблица 3. Сравнение результатов моделирования разными методами.

Заключение

Разработана тепловая модель монолитной интегральной схемы СВЧ усилителя мощности. Методом компьютерного моделирования показано, что при увеличении температуры окружающей среды от 300 до 600 К максимальная температура перегрева кристалла МИС, выполненного из арсенида галлия, увеличивается от 38 до 84 К, а максимальная температура перегрева кристалла МИС, выполненного из нитрида галлия, – от 18 до 47 К. Разработана тепловая эквивалентная схема МИС, учитывающая тепловые связи между источниками тепла в кристалле и позволяющая определять температуру перегрева различных элементов конструкции МИС. Разработанные модели высокотемпературных могут быть использованы при проектировании интегральных микросхем, в том числе, с неоднородным расположением источников тепловыделения в кристалле.

Финансирование: исследование выполнено за счет гранта Российского научного фонда № 23-79-10069, https://rscf.ru/project/23-79-10069/.

Литература

- Sharma R.C. et al. Gallium arsenide and gallium nitride semiconductors for power and optoelectronics devices applications //Journal of Physics: Conference Series. – IOP Publishing, 2023. – V. 2426. – №. 1. – C. 012008. https://doi.org/10.1088/1742-6596/2426/1/012008
- Hassan A. et al. Circuit techniques in GaN technology for high-temperature environments //Electronics. – 2021. – V. 11. – №. 1. – P. 42. https://doi.org/10.3390/electronics11010042
- 3. Беспалов В., Егоркин В., Журавлев М. Нитрид галлия: новый подход эффективного преобразования электроэнергии // для Электроника: Техноло-гия, Бизнес. 2022. N⁰ 3. C. 150–157. Наука, _ ____ https://doi.org/10.22184/1992-4178.2022.214.3.150.157
- Коколов А.А., Черкашин М.В. Построение и характеристики СВЧ-монолитных усилителей мощности на основе полупроводниковых материалов GaAs и GaN // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2011. – №. 2-2 (24). – С. 17-23.
- Боднарь Д. Металлические и композитные теплопроводящие материалы для мощных полупроводниковых корпусов //Компоненты и технологии. – 2014. – №. 12 (161). – С. 155-160.
- Kadum M.E., Imran A.A., Aljabair S. Heat transfer in electronic systems printed circuit board: A review // Engineering and Technology Journal. – 2022. – V. 40. – №. 01. – P. 99-108. http://doi.org/10.30684/etj.v40i1.2113
- Uvarov B.M., Zin'kovskii Y.F. Electrothermal models of structural elements of radioelectronic device //Radioelectronics and Communications Systems. – 2015. – V. 58. – №. 11. – P. 506-514. https://doi.org/10.3103/S0735272715110047
- Сергеев В.А., Тарасов Р.Г., Ходаков А.М. Расчет и измерение тепловых параметров монолитных интегральных схем СВЧ-усилителей в составе выходных усилителей мощности Х-диапазона //Журнал радиоэлектроники. – 2019. – №. 9. – С. 9-9. https://doi.org/10.30898/1684-1719.2019.9.1

- Ходаков А.М. и др. Термодеформационная модель субмодуля выходного усилителя мощности Х-диапазона // Радиоэлектроника. Наносистемы. Информационные технологии. – 2021. – Т. 13. – №. 1. – С. 13-18. DOI: https://doi.org/10.17725/rensit.2021.13.013
- Металлокерамические и керамические корпуса для полупроводниковых приборов и монолитных интегральных схем СВЧ [Электронный ресурс].
 Режим доступа: https://m-projects.ru/news/375/. Дата обращения 23.12.2024.
- 11. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 487 с.
- NSM Archive Physical Properties of Semiconductors [электронный ресурс].
 Режим доступа: http://www.ioffe.rssi.ru/SVA/NSM/Semicond\index.html. Дата обращения 23.12.2024.
- Xu Y., Hopkins D.C. Misconception of thermal spreading angle and misapplication to IGBT power modules // 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. – IEEE, 2014. – P. 545-551. https://doi.org/10.1109/APEC.2014.6803362
- 14. Захаров, А.Л.; Асвадурова, Е.И. Расчет тепловых параметров полупроводниковых приборов: метод эквивалентов. М.: Радио и связь, 1983.

Для цитирования:

Фролов И.В., Ходаков А.М., Сергеев В.А., Клейменкин Д.В. Моделирование тепловых характеристик высокотемпературных монолитных интегральных схем с неоднородным распределением источников тепловыделения в кристалле. // Журнал радиоэлектроники. – 2025. – №. 4. https://doi.org/10.30898/1684-1719.2025.4.7