Journal of Radio Electronics. eISSN 1684-1719. 2025. №4

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.4.8

 

 

 

Effect of strong local atmospheric
disturbance on the radiation resistance
of a low-frequency loop antenna located
in the Earth's ionosphere

 

A.V. Moshkov

 

Kotelnikov IRE RAS
125009, Russia, Moscow, Mokhovaya str., 11, b.7

 

The paper was received January 13, 2025.

 

Abstract. A low-frequency loop antenna located in the ionosphere can be an effective diagnostic tool for determining the parameters of strong local atmospheric disturbances. The source of such disturbances can be the intrusion of meteoroids into the atmosphere. The input impedance of the loop antenna in the undisturbed ionosphere weakly depends on the parameters of the surrounding magnetoactive plasma, so an inhomogeneity of the environment does not disrupt the matching of the loop with the transmitter. The article presents the results of numerical calculations of radiation resistance and reactance values of the low-frequency loop antenna located in the ionosphere in the frequency range of 1...10 kHz. The parameters of the ionospheric plasma (ionization value, temperature, effective frequency of electron collisions) change in time under the influence of a strong local disturbance emerging in the atmosphere. It is shown that as the disturbance region approaches the antenna, the magnitude of the radiation resistance is significantly different from the background values, first in the direction of increase, and then in the direction of decrease, down to a value of the order of the radiation resistance in free space. The duration of these disturbances is in the range from 15 to 30 s with a change in the initial energy of the atmospheric disturbance from 1 to 10 PJ. The antenna reactance changes by several orders of magnitude, which makes it difficult to match it with the transmitter, especially at frequencies exceeding the lower hybrid frequency.

Key words: low frequencies, lower ionosphere, strong local disturbance, enhanced ionization, loop antenna, radiation resistance.

Financing: the work was carried out on the topic of the state assignment of the Kotelnikov IRE RAS No. FFWZ-2022-0014.

Corresponding author: Moshkov Aleksandr Vladimirovich, kuzaf@inbox.ru

References

1. Акиндинов В.В., Еремин С.М., Лишин И.В. Антенны низкой частоты в магнитоактивной плазме (обзор) [Low Frequency Antennas in Magnetoactive Plasma (Review)] // Радиотехника и электроника. - 1985. - Т. 30. - № 5. - С. 833-850. (In Russian).

2. Арманд Н.А., Семенов Ю.П., Черток Б.Е. и др. Экспериментальное исследование в ионосфере Земли излучения рамочной антенны в диапазоне очень низких частот, установленной на орбитальном комплексе «Мир-Прогресс-28-Союз ТМ-2» [Experimental study of the Earth's ionosphere radiation of a frame antenna in the very low frequency range, installed on the Mir- Progress-28-Soyuz TM-2 orbital complex] // Радиотехника и электроника. - 1988. - Т. 33. - № 11. - С. 2225-2233. (In Russian).

3. Lukin D.S., Presniakov V.B., Savtchenko P.P. The Calculation of Wave Field in the Near-Zone of the Loop VLF Radiator in the Uniform Magnetoplasma // Geomagnetism and Aeronomy. - 1988. - Vol. 27. - No. 2. - P. 262-267.

4. Moshkov A.V., Pozhidaev V.N. Numerical Simulation of the Distribution of the Low-Frequency Field Created by a Transmitting Loop Antenna Installed on board a Spacecraft // J. Communications Technology and Electronics. - 2019. - Vol. 64. - No. 9. - P. 937-944. - https://doi.org/10.1134/S1064226919080126.

5. Moshkov A.V., Pozhidaev V.N. Propagation of high-frequency radio waves in the presence of a strong local ionospheric disturbance // J. Communications Technology and Electronics. - 2013. - Vol. 58. - No. 4. - P. 277-283. - https://doi.org/10.1134/S1064226913040128.

6. Moshkov A.V. Estimation of the field strength of a low-frequency ionospheric source in the vicinity of the main maximum of distribution on the Earth surface // J. Communications Technology and Electronics. - 2009. - Vol. 54. - No. 12. - P. 1360-1365. - https://doi.org/10.1134/S1064226909120043.

7. Мошков А.В. Численное моделирование наземного распределения напряженности поля бортового низкочастотного передатчика в ионосфере [Numerical Simulation of The Ground Distribution of The Field Strength of An On-Board Low-Frequency Transmitter Located In The Ionosphere] // Журнал радиоэлектроники [электронный журнал]. - 2021. - № 6. - https://doi.org/10.30898/1684-1719.2021.6.13 (In Russian).

8. Wang T.N.C., Bell T.F. Radiation Resistance of a Short Dipole Immersed in a Cold Magnetoionic Medium // Radio Sci. - 1969. - Vol. 4. - No. 2. - P. 167-177. - https://doi.org/10.1029/RS004i002p00167.

9. Бронштэн В.А. Физика метеорных явлений [Physics of meteor phenomena]. – Москва: Наука, 1981. - 416 c. (In Russian).

10. Stix T.H. The Theory of Plasma Waves. - New York: McGraw-Hill, 1962. - 283 p.

11. Moshkov A.V. Influence of a Strong Loсal Atmospheric Disturbance on the Resonant Structure of the Near Field of a Low-Frequency Loop Antenna Located in the Ionosphere of the Earth // J. of Communications Technology and Electronics. - 2023. - Vol. 68. - No. 9. - P. 940–945. - https://doi.org/10.1134/S1064226923090188.

12. Фаткуллин M.H., Зеленова Т.И., Козлов В.К. и др. Эмпирические модели среднеширотной ионосферы [Empirical models of the midlatitude ionosphere]. - Москва: Наука, 1981. - 256 с. (In Russian).

For citation:

Moshkov A.V. Effect of strong local atmospheric disturbance on the radiation resistance of a low-frequency loop antenna located in the Earth's ionosphere. // Journal of Radio Electronics. – 2025. – №. 4. https://doi.org/10.30898/1684-1719.2025.4.8 (In Russian)