ВЫСОКОЧАСТОТНЫЕ ДИЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ ЛЕГИРОВАННОГО МОНОКРИСТАЛЛА TIGaS₂<Cr>

С.Н.Мустафаева Институт Физики Национальной Академии Наук Азербайджана

Получена 16 июля 2008 г.

В слоистых монокристаллах $TlGaS_2 < Cr >$ изучена частотная дисперсия тангенса угла диэлектрических потерь $(tg\delta)$, действительной (ε) и мнимой (ε'') составляющих комплексной диэлектрической проницаемости и ас-проводимости (σ_{ac}) поперек слоев в области частот $f=5\cdot 10^4 \div 3.5\cdot 10^7$ Hz. Установлено, что в изученных монокристаллах $TlGaS_2 < Cr >$ имеет место релаксационная дисперсия. Частичное замещение галлия в монокристаллах $TlGaS_2$ хромом приводит к модифицированию дисперсионных кривых $\varepsilon'(f)$ и $\varepsilon''(f)$.

В диапазоне частот $f = 4 \cdot 10^5 \div 1.2 \cdot 10^7$ Hz ас-проводимость монокристалла $TlGaS_2 < Cr >$ подчинялась закономерности $\sigma_{ac} \sim f^{-0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность (N_F) и разброс (ΔE) состояний, лежащих в окрестности уровня Ферми $N_F = 1.6 \cdot 10^{19} \ eV^{-1} \cdot cm^{-3}$ и $\Delta E = 5 \cdot 10^{-2} \ eV$; среднее время (τ) и расстояние (R) прыжков $\tau = 0.16$ mks и R = 85 Å.

Изучение электрических свойств слоистых монокристаллов $TIGaS_2$ на постоянном [1] и переменном [2] токе показало, что при температурах $T < 200 \ K$ и частотах $f = 5 \cdot 10^4 \div 10^6 \ Hz$ в них имеет место прыжковая dc- и аспроводимость по локализованным вблизи уровня Ферми состояниям. Было показано, что результаты изучения dc- и ас-проводимости кристаллов $TIGaS_2$ хорошо согласуются друг с другом.

Целью настоящей работы явилось изучение влияния легирования монокристалла $TlGaS_2$ хромом на диэлектрические свойства полученных кристаллов, измеренных на переменном токе.

Для получения гомогенных образцов $TlGaS_2 < Cr >$ (процентное содержание хрома в кристаллах взято равным 0.5 mol. %) использован метод прямого синтеза исходных компонентов. Монокристаллы $TlGaS_2 < Cr >$ выращены методом Бриджмена.

Из выращенных монокристаллов были изготовлены образцы для записи дифрактограмм. Дифрактограммы были записаны в интервале углов $10^{\circ} \le \theta \le 60^{\circ}$.

В табл. 1 приведены полученные из анализа дифрактограмм образцов $TIGaS_2$ и $TIGa_{0.995}$ $Cr_{0.005}S_2$ кристаллографические данные [3].

Состав	Параметры решетки				\mathbf{z}	Пр. гр.	$\rho_{\rm x} ({\rm g/cm}^3)$
	a(Å)	b(Å)	c(Å)	β	_	11p. 1p.	
TlGaS ₂	10.40	10.40	15.17	100°	16	P2 _{1/n}	5.560
TlGa _{0.995} Cr _{0.005} S ₂	7.625	7.293	29.814	90°10′	16	P2 _{1/n}	5.181

Таблица 1. Рентгенографические данные образцов $TlGaS_2$ и $TlGa_{0.995}$ $Cr_{0.005}S_2$

Диэлектрические коэффициенты монокристаллов $TIGaS_2 < Cr >$ измерены резонансным методом с помощью куметра TESLA BM 560. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz.

Образцы из $TIGaS_2 < Cr >$ для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической C-оси кристалла. В качестве электродов использована серебряная паста. Толщина монокристаллического образца из $TIGaS_2 < Cr >$ составляла 600 mkm, а площадь обкладок $-6\cdot 10^{-2}$ cm².

Все диэлектрические измерения проведены при 300 К. Воспроизводимость положения резонанса составляла по емкости \pm 0.2 pF, а по добротности (Q = $1/tg\delta$) $\pm 1.0 \div 1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3-4 % для ϵ и 7 % для $tg\delta$.

На рис. 1 приведены частотные зависимости диэлектрической проницаемости (ϵ) образцов TlGaS₂ и TlGaS₂<Cr>. Из рис. 1 видно, что в TlGaS₂ (кривая 1) во всем изученном диапазоне частот существенной дисперсии ϵ не наблюдается, а ее значение варьируется в пределах 26–30. Легирование кристалла TlGaS₂ хромом приводит к заметной диэлектрической дисперсии (рис.1, кривая 2). Так, в TlGaS₂<Cr> с изменением частоты от $5\cdot10^4$ до $3.5\cdot10^7$ Нz значение ϵ уменьшалось от 30.5 до 21.5.

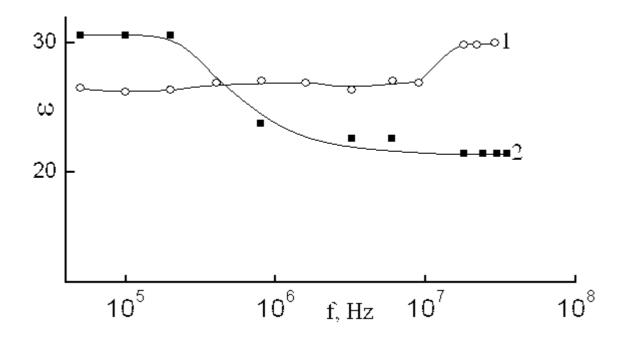


Рис.1. Дисперсионные кривые ε(f) для монокристаллов TlGaS₂ (1) и TlGaS₂<Cr> (2) при 300 К.

Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости монокристалла $TIGaS_2 < Cr > c$ ростом частоты от $2 \cdot 10^5$ до $3.5 \cdot 10^7$ Hz (рис. 1, кривая 2) свидетельствует о релаксационной дисперсии.

Значения тангенса угла диэлектрических потерь (tg δ) изученных монокристаллов TlGaS₂<Cr> существенно превышали значения tg δ в TlGaS₂ [2] (рис. 2). Кроме того tg δ в TlGaS₂<Cr> в отличие от TlGaS₂ характеризовался значительной дисперсией в диапазоне частот $5\cdot 10^4 \div 10^7$ Hz (рис. 2, кривая 2).

При описании взаимодействия электромагнитного поля с веществом часто используют величину, называемую комплексной диэлектрической проницаемостью:

$$\tilde{\varepsilon} = \varepsilon' - j\varepsilon'',\tag{1}$$

где действительная составляющая комплексной диэлектрической проницаемости $\varepsilon' = \varepsilon \,,\, \text{а мнимая} \colon$

$$\varepsilon'' = \varepsilon \cdot tg \delta \tag{2}$$

На рис. 3 приведена частотная зависимость ε'' монокристаллов TlGaS $_2$ (кривая 1) и TlGaS $_2$ <Cr>> (кривая 2). Как видно из этого рисунка, введение хрома в кристаллы TlGaS $_2$ приводило к модифицированию дисперсионных кривых ε'' (f). Так, в TlGaS $_2$ кривая ε'' (f) имела две ветви: слабо спадающую при $f = 5 \cdot 10^4 \div 10^6$ Hz и резко возрастающую при $f > 10^6$ Hz. В отличие от монокристалла TlGaS $_2$, в TlGaS $_2$ <Cr>>

дисперсионная кривая $\varepsilon''(f)$ характеризовалась довольно ощутимым спадом во всей изученной области частот.

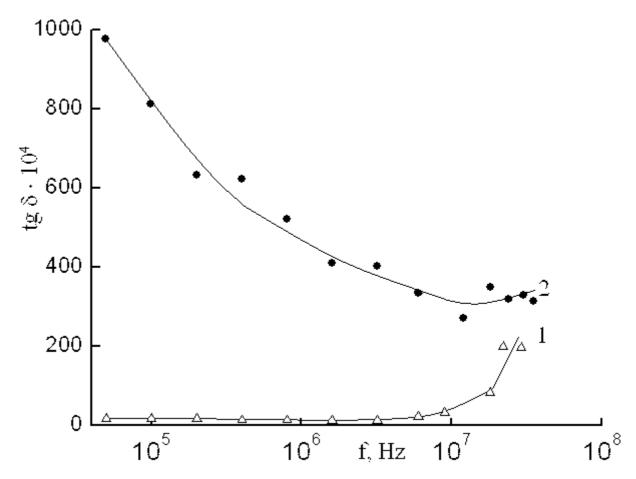


Рис.2. Частотные зависимости тангенса угла диэлектрических потерь для монокристаллов $TIGaS_2$ (1) и $TIGaS_2$ <Cr> (2). T = 300 K.

На рис. 4 представлены экспериментальные результаты изучения частотнозависимой ас-проводимости монокристалла $TlGaS_2 < Cr >$ (кривая 2) при 300 К. На этом же рисунке для сравнения приведена зависимость $\sigma_{ac}(f)$ для монокристалла $TlGaS_2$ [2] (кривая 1). В частотной области $5 \cdot 10^4 \div 10^6$ Hz ас-проводимость монокристалла $TlGaS_2$ изменялась по закону $\sigma_{ac} \sim f^{0.8}$, а при $f = 10^6 \div 3 \cdot 10^7$ Hz $\sigma_{ac} \sim f^2$. Дисперсионная кривая $\sigma_{ac}(f)$ образца $TlGaS_2 < Cr >$ имела три наклона:

$$\sigma_{ac} = \sigma_1 + \sigma_2 + \sigma_3, \tag{3}$$

где $\sigma_1 \sim f^{0.6}$ в интервале частот $f = 5 \cdot 10^4 \div 4 \cdot 10^5$ Hz; $\sigma_2 \sim f^{0.8}$ при $f = 4 \cdot 10^5 \div 1.2 \cdot 10^7$ Hz и $\sigma_3 \sim f^{1.2}$ при $f > 10^7$ Hz.

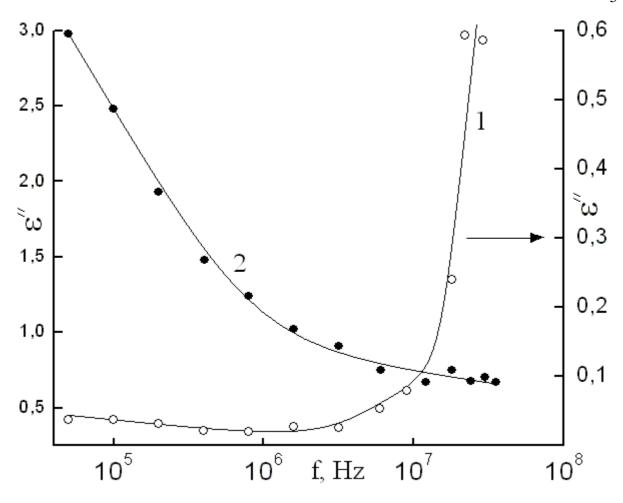


Рис.3. Частотная зависимость мнимой составляющей комплексной диэлектрической проницаемости монокристаллов $TIGaS_2(1)$ и $TIGaS_2 < Cr > (2)$.

Обычная ас-проводимость зонного типа является в основном частотнонезависимой вплоть до $10^{10} \div 10^{11}$ Hz. Наблюдаемая нами экспериментальная зависимость $\sigma_{ac} \sim f^{0.8}$ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [4]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{ac} \sim f^{-0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми [5]:

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 kT N_F^2 a^5 f \left[\ln \left(\frac{v_{ph}}{f} \right) \right]^4, \tag{4}$$

где е – заряд электрона; k – постоянная Больцмана; N_F – плотность состояний вблизи уровня Ферми; $a=1/\alpha$ – радиус локализации; α – постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}; \nu_{ph}$ – фононная частота.

Рис.4. Частотно-зависимая проводимость монокристаллов TlGaS $_2$ (1) и TlGaS $_2$ <Cr>> (2) при T = 300 K.

Согласно формуле (4) ас-проводимость зависит от частоты как $f[\ln(v_{ph}/f)]^4$, т.е. при $f << v_{ph}$ σ_{ac} приблизительно пропорциональна $f^{0.8}$. С помощью формулы (4) по экспериментально найденным значениям $\sigma_{ac}(f)$ вычислили плотность состояний на уровне Ферми. Вычисленное значение N_F для монокристалла $TIGaS_2 < Cr> составляло <math>N_F = 1.6 \cdot 10^{19} \ eV^{-1} \cdot cm^{-3}$. Следует отметить, что в $TIGaS_2$ [2] для N_F было получено значение, примерно на порядок меньше $(2.1 \cdot 10^{18} \ eV^{-1} \cdot cm^{-3})$. Т.е. легирование монокристалла $TIGaS_2$ хромом приводило к увеличению на один порядок плотности состояний вблизи уровня Ферми. При вычислениях N_F для радиуса локализации взято

значение $a=14\,\text{ Å}\,$ по аналогии с сульфидом галлия [6], являющимся бинарным аналогом $TlGaS_2$. А значение v_{ph} для $TlGaS_2$ порядка $10^{12}\,\text{Hz}$ взято из [7].

Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по следующей формуле [4]:

$$R = \frac{1}{2\alpha} \ln \left(\frac{v_{ph}}{f} \right). \tag{5}$$

В формуле (5) значение f соответствует средней частоте, при которой наблюдается f $^{0.8}$ – закон. Вычисленное по формуле (5) значение R для монокристалла TlGaS $_2$ <Cr> составляло 85 Å. В TlGaS $_2$ для R было получено значение 103 Å [2].

Эти значения R примерно в $6 \div 7$ раз превышают среднее расстояние между центрами локализации носителей заряда в монокристаллах $TlGaS_2$ и $TlGaS_2 < Cr >$.

Значение R позволило по формуле

$$\tau^{-1} = \nu_{ph} \cdot \exp(-2\alpha R) \tag{6}$$

определить среднее время прыжков в монокристалле $TlGaS_2 < Cr >: \tau = 0.16$ mks, которое было более чем в 10 раз меньше, чем в $TlGaS_2$ [2].

По формуле:

$$\Delta E = \frac{3}{2\pi R^3 \cdot N_F} \tag{7}$$

в TlGaS₂<Cr> оценен разброс локализованных вблизи уровня Ферми состояний: Δ E= $5\cdot 10^{-2}$ eV. А по формуле:

$$N_{t} = N_{F} \cdot \Delta E \tag{8}$$

определена концентрация глубоких ловушек в $TlGaS_2 < Cr>$, ответственных за ас-проводимость: $N_t = 8 \cdot 10^{17} \text{ cm}^{-3}$.

Ниже в табл. 2 приведены для сравнения параметры, определенные из измерений диэлектрических свойств монокристаллов $TlGaS_2$ и $TlGaS_2 < Cr >$ на переменном токе.

Таблица 2. Параметры монокристаллов $TIGaS_2$ и $TIGaS_2 < Cr >$, определенные из высокочастотных диэлектрических измерений (T = 300 K)

Кристалл	N_F , $eV^{-1}cm^{-3}$	τ, mks	R, Å	R/a
TlGaS ₂	$2.1 \cdot 10^{18}$	2.0	103	7
TlGaS ₂ <cr></cr>	$1.6 \cdot 10^{19}$	0.16	85	6

Из табл. 2 наглядно видно, что легирование монокристалла $TIGaS_2$ хромом приводило к увеличению почти на порядок плотности состояний вблизи уровня Ферми и к уменьшению средней длины и времени прыжков.

Таким образом, экспериментальные результаты по изучению частотной дисперсии диэлектрических коэффициентов монокристалла $TIGaS_2 < Cr > позволили$ установить природу диэлектрических потерь, механизм переноса заряда, оценить плотность состояний вблизи уровня Ферми, их разброс, среднее время и расстояние прыжков, а также концентрацию глубоких ловушек, ответственных за проводимость на переменном токе. Показано, что за счет легирования монокристалла $TIGaS_2$ хромом можно управлять его диэлектрическими свойствами.

СПИСОК ЛИТЕРАТУРЫ

- 1. С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ **40**, 4, 612 (1998).
- 2. C.H. MycτaφaeBa. ΦΤΤ **46**, 6, 979 (2004).
- 3. С.Н.Мустафаева, Э.М.Керимова, Ю.Г.Асадов. Тез. докл. XII-ой Национальной конф. по росту кристаллов. НКРК–2006. Ин-т кристаллографии имени А.В.Шубникова РАН. Москва. 2006. С. 202.
- 4. Н.Мотт, Э.Дэвис. Электронные процессы в некристаллических веществах. Мир, М. 1974. 472 с.
- 5. M.Pollak. Phil. Mag. 23, 519 (1971).
- 6. V.Augelli, C.Manfredotti, R.Murri, R.Piccolo, L.Vasanelli. Nuovo Cimento B **38**, 2, 327 (1977).
- 7. К.Р.Аллахвердиев, Е.А.Виноградов, Р.Х.Нани и др. Колебательный спектр кристалллов $TIGaS_2$, $TIGaSe_2$ и β – $TIInS_2$ // В кн.: Физические свойства сложных полупроводников. Баку: Элм. 1982. С. 55 63.