КОМПЛЕКСНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ И АС-ПРОВОДИМОСТЬ МОНОКРИСТАЛЛОВ GaSe, ВЫРАЩЕННЫХ ИЗ ГАЗОВОЙ ФАЗЫ

С. Н. Мустафаева, М. М. Асадов

¹ Институт физики Национальной академии наук, Баку, Азербайджан ² Институт химических проблем Национальной академии наук, Баку, Азербайджан

Получена 16 июля 2011 г.

Аннотация. В полученных слоистых монокристаллах GaSe изучена частотная дисперсия действительной (ϵ) и мнимой (ϵ'') составляющих комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь $tg\delta$ (f) $f = 5 \times 10^4 - 3.5 \times 10^7 \text{ FH}.$ частот ас-проводимости (σ_{ac}) В области Установлено, что в изученных кристаллах имеет место релаксационная дисперсия ε и ε". Показано, что диэлектрические потери в GaSe обусловлены релаксационной поляризацией и сквозной проводимостью. В диапазоне частот $f = 10^5 - 3.5 \times 10^7 \ \Gamma \text{ц}$ ас-проводимость кристалла GaSe подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность (N_F) и разброс (ΔE) этих состояний $N_F = 1.3 \times 10^{18} \text{ эВ}^{-1} \cdot \text{см}^{-3}$, $\Delta E = 0.048$ эВ, среднее время прыжков $\tau = 0.1$ мкс и R = 197 Å, а также радиус локализации а расстояние (R) = 32 Å.

Ключевые слова: диэлектрические свойства, частота, ас-проводимость, монокристалл GaSe.

Abstract. The frequency dispersion of the real (ϵ) and imaginary (ϵ ") components of the complex dielectric constant, dielectric loss tangent tan δ (f) and ac-conductivity (σ_{ac}) of the obtained layered GaSe single crystals have been studied in the frequency range $f = 5 \times 10^4$ -3.5 $\times 10^7$ Hz. It was found that in the studied crystals a relaxation dispersion of ϵ

and ϵ " takes place. It is shown that the dielectric losses in GaSe are caused by the relaxation polarization and pass-through conduction. In the frequency range $f=10^5$ -3.5 \times 10⁷ Hz ac-conductivity of the crystal GaSe varies as $\sigma_{ac} \sim f^{-0.8}$, typical for hopping charge transport mechanism between localized states near the Fermi level. The Fermi-level density of states $N_F=1.3\times 10^{18}~eV^{-1}~cm^{-3}$ and the spread of these states $\Delta E=0.048~eV$, the average time $\tau=0.1~\mu s$ and distance R=197~Å of jumps, as well as the localization radius a=32~Å have been estimated.

Keywords: dielectric properties, frequency, ac-conductivity, GaSe single crystal.

ВВЕДЕНИЕ

Монокристаллы GaSe принадлежат к классу слоистых полупроводников, характеризующихся анизотропными физическими свойствами. В [1,2] были изучены процессы переноса заряда в монокристаллах GaSe, выращенных методом Бриджмена. Было показано, что в них при низких температурах (T < 200 K) на постоянном токе (dc) и при T = 300 K на переменном токе (ac) имеет место прыжковый механизм переноса заряда по состояниям, локализованным вблизи уровня Ферми.

В настоящей работе представлены результаты измерений диэлектрических свойств и ас-проводимости монокристаллов p-GaSe, выращенных из газовой фазы.

МЕТОДИКА ЭКСПЕРИМЕНТА

Соединение GaSe синтезировано путем сплавления исходных компонентов высокой степени чистоты (≥ 99.999%) в ваккумированной кварцевой ампуле. Монокристаллы GaSe были выращены из синтезированного соединения методом химических транспортных реакций в эвакуированной кварцевой ампуле с использованием йода в качестве носителя. Полученные монокристаллы GaSe представляли собой ярко-красные слои, обладающие высокой оптической прозрачностью.

Образцы из GaSe для электрических измерений были изготовлены в виде плоских конденсаторов. В качестве электродов использована серебряная паста. Толщина кристаллического образца из GaSe составляла 100мкм.

Диэлектрические коэффициенты монокристаллов GaSe измерены резонансным методом с помощью куметра TESLA BM 560. Диапазон частот переменного электрического поля составлял 5×10^4 – 3.5×10^7 Γ ц.

Все диэлектрические измерения проведены при 300 К. Воспроизводимость положения резонанса составляла по емкости \pm 0.2 пФ, а по добротности ($Q=1/\text{tg}\delta$) \pm 1.0–1.5 деления шкалы. При этом наибольшие отклонения от средних значений составляли 3 – 4 % для ε и 7 % для $\text{tg}\delta$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены частотные зависимости диэлектрической проницаемости (ε) образца GaSe.

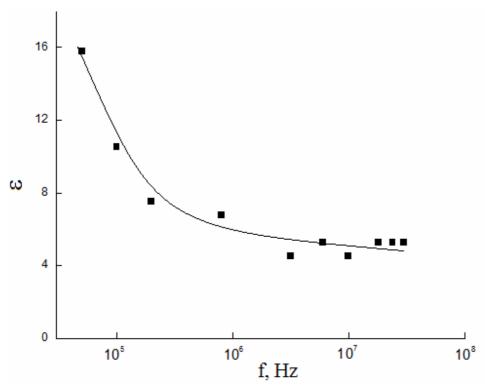


Рис. 1. Частотная дисперсия действительной составляющей комплексной диэлектрической проницаемости монокристалла GaSe.

Как видно из рис. 1 ε изученного образца претерпевает существенную дисперсию. По мере увеличения частоты от 5×10^4 до 3.5×10^7 Гц значение ε уменьшается \sim в 4 раза. Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости GaSe свидетельствует о релаксационной дисперсии [3].

На рис. 2 показана частотная дисперсия коэффициента диэлектрических потерь $\varepsilon'' = \varepsilon \cdot tg \, \delta$ в GaSe.

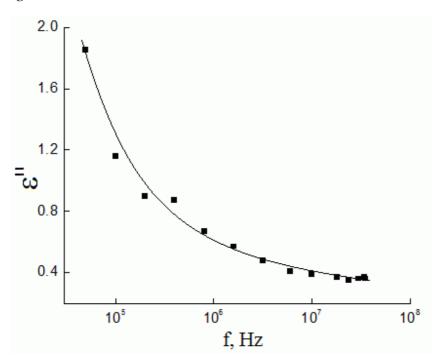


Рис. 2. Частотная зависимость мнимой составляющей комплексной диэлектрической проницаемости монокристалла GaSe.

Значение ε'' варьируется в пределах 1.85–0.36 во всей изученной области частот. Величина ε'' с ростом частоты вплоть до 3.5×10^7 Гц уменьшается примерно в 5 раз, т.е. дисперсионная кривая $\varepsilon''(f)$ характеризуется довольно ощутимым спадом во всем изученном диапазоне частот.

На частотной зависимости тангенса угла диэлектрических потерь в кристалле GaSe при $f = 1.6 \cdot 10^6$ Гц наблюдался максимум (рис. 3), а затем кривая $tg\delta$ (f) носила спадающий характер. Форма экспериментальной кривой $tg\delta$ (f) в GaSe характерна для частотного изменения диэлектрических потерь с учетом вкладов релаксационного механизма и электропроводности кристалла [3]. Наблюдение максимума на кривой $tg\delta$ (f) свидетельствует о релаксационных потерях в GaSe, а наличие одного максимума говорит о том, что монокристалл GaSe имеет одно время релаксации.

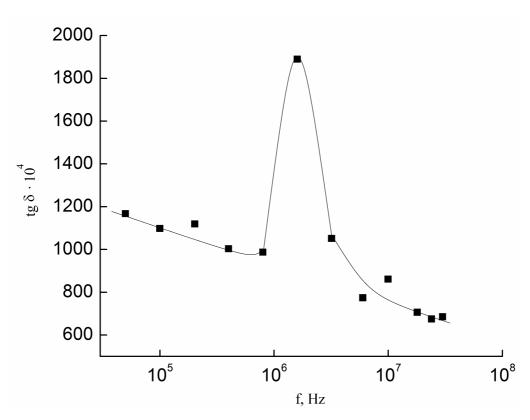


Рис. 3. Зависимость тангенса угла диэлектрических потерь в монокристалле GaSe от частоты.

На рис. 4 представлены экспериментальные результаты изучения частотнозависимой ас-проводимости монокристалла GaSe при 300 K.

В частотной области $10^5 – 3.5 \times 10^7$ ас-проводимость монокристалла GaSe изменялась по закону $\sigma_{ac} \sim f^{-s}$, где s=0.8. Как известно, ас-проводимость зонного типа является в основном частотно-независимой вплоть до $10^{10} – 10^{11}$ Гц. Наблюдаемая нами экспериментальная зависимость $\sigma_{ac} \sim f^{-0.8}$ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями.

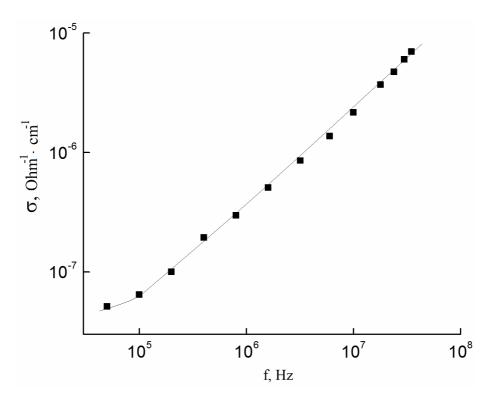


Рис. 4. Частотно-зависимая ас-проводимость монокристалла GaSe при T = 300 K.

Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [4]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми [5]:

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 kT N_F^2 a^5 f \left[\ln \left(\frac{v_{ph}}{f} \right) \right]^4, \tag{1}$$

где e — заряд электрона; k — постоянная Больцмана; N_F — плотность состояний вблизи уровня Ферми; $a=1/\alpha$ — радиус локализации; α — постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$; $\nu_{\rm ph}$ — фононная частота.

Согласно формуле (1) ас-проводимость зависит от частоты как $f \left[\ln(\nu_{ph} / f) \right]^4$, т.е. при $f << \nu_{\rm ph}$ величина $\sigma_{\rm ac}$ приблизительно пропорциональна $f^{0.8}$.

С помощью формулы (1) по экспериментально найденным значениям $\sigma_{ac}(f)$ вычислили плотность состояний на уровне Ферми. Вычисленное значение $N_{\rm F}$ для монокристалла GaSe составляло $N_{\rm F}=1.3\times10^{18}~{\rm 9B^{-1}\cdot cm^{-3}}$. При вычислениях $N_{\rm F}$ для радиуса локализации взято значение $a=34~{\rm \AA}$, полученное экспериментально для монокристалла GaSe из dc-измерений [2]. Значение $\nu_{\rm ph}$ взято равным $10^{12}\,\Gamma$ ц.

Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по следующей формуле

$$R = \frac{1}{2\alpha} \ln \left(\frac{v_{ph}}{f} \right). \tag{2}$$

Вычисленное по формуле (2) значение R для монокристалла GaSe составляло 197 Å. Это значение R примерно в 6 раз превышает среднее расстояние между центрами локализации носителей заряда в монокристалле GaSe. Значение R позволило по формуле

$$\tau^{-1} = \nu_{ph} \cdot exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в монокристалле GaSe: $\tau = 0.1$ мкс.

По формуле [4]

$$\Delta E = 3/2\pi R^3 \cdot N_F \tag{4}$$

в монокристалле GaSe оценен разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 0.048$ эВ. А по формуле:

$$N_t = N_F \cdot \Delta E \tag{5}$$

определена концентрация глубоких ловушек в монокристалле GaSe, ответственных за ас-проводимость: $N_t = 6.2 \times 10^{16} \, \mathrm{cm}^{-3}$.

При переносе заряда вследствие прыжковой проводимости по локализованным в запрещенной зоне состояниям следует учитывать, что эти локализованные состояния, случайным образом распределенные в объеме образца, разделены энергетическим барьером. Величина параметра s в частотной зависимости аспроводимости позволяет оценить разницу энергий между основным состоянием в энергетическом минимуме и свободным состоянием, в котором носитель может перемещаться по кристаллу [6]

$$W_m = \frac{6kT}{1-s} \tag{6}$$

Расчеты показывают, что в образце GaSe $W_m = 0.77$ эВ. Полученное значение W_m и значение диэлектрической проницаемости монокристалла GaSe в области высоких частот, при которых имеет место $f^{-0.8}$ —закон для ас-проводимости, позволяют по формуле

$$a = \frac{e^2}{2\varepsilon\varepsilon_0 W_m} \tag{7}$$

(где ε_0 — диэлектрическая постоянная) определить боровский радиус локализованного носителя заряда a=32 Å. То есть значения радиуса

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N8, 2011</u>

локализации, полученные из dc и ас-измерений монокристалла GaSe, почти совпадают друг с другом.

ЗАКЛЮЧЕНИЕ

Таким образом, экспериментальные результаты по изучению частотной дисперсии диэлектрических коэффициентов и проводимости монокристалла GaSe позволили установить природу диэлектрических потерь, механизм переноса заряда, оценить параметры локализованных состояний, такие как плотность состояний вблизи уровня Ферми и их разброс, среднее время и расстояние прыжков, а также концентрацию глубоких ловушек, ответственных за проводимость на переменном токе.

ЛИТЕРАТУРА

- 1. Мустафаева С.Н., Асадов М.М. Прыжковая проводимость в монокристаллах р GaSe // Неорганические материалы. 1988. Т. 24 № 6. С. 917–920.
- 2. Мустафаева С.Н. Прыжковая проводимость в монокристаллах p-GaSe на постоянном токе // Неорганические материалы. 1994. Т. 30. № 5. С. 619–621.
- 3. Пасынков В.В., Сорокин В.С. Материалы электронной техники. М.: Высшая школа. 1986. 368 с.
- 4. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир 1974. 472 с.
- 5. Pollak M. Frequency dependence of conductivity in amorphous solids // Phil. Mag. 1971. V. 23. P. 519–542.
- 6. Балашова Е.В., Кричевцов Б.Б., Леманов В.В. Диэлектрическая проницаемость и проводимость пленок триглицинсульфата на подложках Al/SiO₂ и α-Al₂O₃ // ФТТ. 2010. Т. 52. № 1. С. 119–123.