"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 8, 2019

contents of issue      DOI  10.30898/1684-1719.2019.8.6     full text in Russian (pdf)  

UDC 621.391, 621.396

Dielectric, thermomechanical properties and phase transitions in shape memory ceramics (Pb0.95La0.05)(Zr0.65Ti0.35)0.9875O3

 

V. V. Koledov 1, V. G. Shavrov 1, A. Peláiz-Barranco 2, V.S. Kalashnikov 1, S.V. von Gratowski 1  

1 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

2 Ferroic Materials Group, Physics Faculty - IMRE, Havana University, San Lázaro y L, Vedado. La Habana 10400, Cuba

 

The paper is received on August 6, 2019

 

Abstract. The phase transformations in ceramic samples of (Pb0.95La0.05)(Zr0.65Ti0.35)0.9875O3 (PLZT) were studied by differential scanning calorimetry in the temperature range from -120 to 300 ° C, by three-point bending under constant load in the temperature range from -100 to 250 ° C and the method of measuring the dielectric constant in the temperature range from 20 to 450 ° C. It was shown that the material exhibits a second-order ferroelectric phase transition in the temperature range from 100 to 300 ° C and a first-order phase structural transition in the range from -20 to 100 ° C. The data obtained indicate that the low-temperature structural transition has features characteristic of thermoelastic martensitic transitions and is accompanied by reversible deformations during thermal cycling under mechanical load. The possibility of observing the shape memory effect (SME) under the influence of changes in temperature and electric field in ceramics of a given composition is discussed.

Key words: phase transitions, shape memory effect, thermoelastic martensitic transformation, lead-titanium-zirconium ceramics.

References

1. Wei, Z. G., Sandstroröm, R., Miyazaki, S. Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. Journal of Materials Science. 1998. Vol. 33. No. 11. P. 3743-3762.

2. Swain, M. V. Shape memory behavior in partially stabilized zirconia ceramics. Nature. 1986. Vol. 322. No 6076. P. 234-236.

3. G. S. Oleynik. Strukturnyye mekhanizmy plasticheskoy deformatsii keramicheskikh materialov. Institut problem materialovedeniya im. I. N. Frantsevicha NAN Ukrainy, Kiyev. Elektronnaya mikroskopiya i prochnost' materialov. - Kiyev: In-t probl. materialovedeniya AN USSR, 1989. - P. 58-72. (In Russian).

4. Drozhzhin A. I., Sidel'nikov I. V. Effekt pamyati formy v izognutykh dielektricheskikh materialakh posle otzhiga. Fizika i khimiya obrabotki materialov. 1980. ¹ 6. P. 101-104. (In Russian).

5. Zuyev L. B., Danilov V. I., Mal'tsev V. D., Berezovskiy V. I. . Obrabotka otzhigom izognutykh poluprovodnikovykh kristallov i vozniknoveniye effekta pamyati formy v nikh.  Izvestiya vuzov. Fizika. 1978. ¹ 12. P. 76-80. (In Russian).

6. Ejiri Koichi. Dekinking of Bent MgO Crystals. J. Amer. Ceram. Soc. 1974. Vol. 57. Nî. 9. P. 416-419.

7. Shevchenko A. D., Shul'zhenko A. A. Effekt pamyati formy v VTSP keramike YBa2Cu3O7-d, poluchennoy v usloviyakh vysokogo davleniya. Fizika i tekhnika vysokikh davleniy. 1991. Tom. 1. ¹ 2. P. 57-60. (In Russian).

8. Sergo, V., Schmid, C., Meriani, S., Evans, A. G. Mechanically Induced Zone Darkening of Alumina/Ceria‐Stabrlized Zirconia Composites. Journal of the American Ceramic Society. 1994. Vol. 77. No. 11. P. 2971-2976.

9. Uchino, K. Antiferroelectric shape memory ceramics. Actuators  Multidisciplinary Digital Publishing Institute. 2016. Vol. 5, No. 2, p. 11.

10. Kimura, T.; Newnham, R.E.; Cross, L.E. Shape-Memory Effect in PLZT Ferroelectric Ceramics. Phase Trans. 1981, 2, 113–116.

11. Uchino, K. Ferroelectric Shape Memory Ceramics. Oyo Butsuri . 1985. Vol.  54. P. 591–595.

12. Heuer, A. H., Ruhle, M., Marshall, D. B. On the thermoelastic martensitic transformation in tetragonal zirconia. Journal of the American Ceramic Society. 1990. Vol. 73. No. 4. P. 1084-1093.

13. Wei, Z. G., Sandstroröm, R., Miyazaki, S. Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. Journal of materials science. 1998.  Vol. 33. No. 15. P. 3743-3762.

14. Reyes‐Morel, P. E., Cerng, J. S., Cheng, I. W. Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: II, Pseudoelasticity and Shape Memory Effect. Journal of the American Ceramic Society. 1988. Vol. 71. No. 8. P. 648-657.

15.  Reyes‐Morel, P. E., Cerng, J. S., Cheng, I. W. Transformation Plasticity of

CeO2‐Stabilized Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis. Journal of the American Ceramic Society. 1988. Vol. 71. No 5. P.  343-353.

16. M. V. Swaint. Shape memory behavior in partially stabilized zirconia ceramics Nature. 1986. Vol. 322 P. 234.

17. Jiang, B., Tu, J., Hsu, T. Y., Xu, Z., Qi, X., Zheng, X., & Zhong, J. The Effect of Some Factors on Ms and SME in Ce-TZP Ceramics. MRS Online Proceedings Library Archive. 1991. P. 246.

18  B. C. Muddle, G. R. Hugo, in ‘‘Proceedings of the International Conference on Martensitic Transformations’ 92’’, edited by C. M. Wayman and J. Perkins 1992. P. 647.

19. Kriven, W. M.). Displacive transformations and their applications in structural ceramics. Le Journal de Physique 1995. IV, 5(C8), C8-101.

20. Mamivand, M., Zaeem, M. A., El Kadiri, H. Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: a phase field study. International Journal of Plasticity. 2014. Vol. 60. Vol. 71-86.

21.  Kelly, P. M., & Rose, L. F. The martensitic transformation in ceramics—its role in transformation toughening. Progress in Materials Science. 2002. Vol. 47. No. 5. P. 463-557.

22. Lai, A., Du, Z., Gan, C. L., & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science. 2013. Vol. 341 No. 6153. P. 1505-1508.

23. Du, Z., Zeng, X. M., Liu, Q., Lai, A., et al. Size effects and shape memory properties in ZrO2 ceramic micro-and nano-pillars. Scripta Materialia. 2015. Vol. 101. P. 40-43.

24 J. San Juan, M. L. Nó, and C. A. Schuh. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotechnology. 2009. Vol. 4. No. 7. P. 415–419.

25. A. Lai, Z. Du, C. L. Gan, and C. A. Schuh. Shape Memory and Superelastic Ceramics at Small Scales. Science . 2013. Vol. 341. No. 6153. P. 1505–1508.

26. A. Runciman, D. Xu, A. R. Pelton, and R. O. Ritchie. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials. 2011. Vol. 32. No. 22. P. 4987–4993.

27.  Barranco, A. Peláiz, Piar, F. Calderón, Guerra, J. De los Santos and Martínez, O. Pérez. Properties of grainoriented in ternary system based on lead titanate zirconate ceramics. Ferroelectrics. 1998. Vol. 211. No. 1. P. 249 — 257.

28. V. S. Kalashnikov, V. V. Koledov, D. S. Kuchin, A. V. Petrov and V. G. Shavrov A Three-Point Bending Test Machine for Studying the Thermomechanical Properties of Shape Memory Alloys. Instruments and Experimental Techniques. 2018. No. 2. P. 306-312.

 

For citation:

V. V. Koledov, V. G. Shavrov, A. Peláiz-Barranco, V. S. Kalashnikov, S. V. von Gratowski. Dielectric, thermomechanical properties and phase transitions in shape memory ceramics (Pb0.95La0.05)(Zr0.65Ti0.35)0.9875O3. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 8. Available at http://jre.cplire.ru/jre/aug19/6/text.pdf

DOI  10.30898/1684-1719.2019.8.6