"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 8, 2019

contents of issue      DOI  10.30898/1684-1719.2019.8.7     full text in Russian (pdf)  

UDC 621.391.81:621.396.96



R. N. Ipanov

National Research University MPEI, Krasnokazarmennaya 14, Moscow, 111250, Russia 


The paper is received on July 1, 2019


Abstract. This paper introduces a simple compact model of complementary junction field-effect transistors (JFETs) with a channel inhomogeneously doped in the transverse direction. Complementary JFETs are used in combination with bipolar transistors in modern low-noise and radiation-resistant analog integrated circuits (ICs), which usually work at extremely low temperatures down to – 197 °C. Unlike other regional models, the proposed one is continuous together with its two first derivatives (C2-continuous). The model is based on the approximation of a gradual channel in the triode region of the I–V characteristic and a monotonic decrease in the output conductivity in their active region. The model assumes saturation at a lower drain voltage than the pinch-off voltage. The new model is validated by comparison to experimental data. On the base of this model the template model is introduced by the replacement of certain parameters of the original physical compact model by the quotient of power series of a gate and drain voltages. The parameters of the template model were determined by the method of least squares. The relative root-mean-square and maximum errors of I–V curves simulation for the template model is reduced by at least two times compared with the same error for the SPICE-model. In addition, the proposed template model has the following advantages in comparison with the standard SPICE-model: the absence of the modulation effect of the channel length at low drain voltages; monotonically decreasing differential output conductivity at any drain voltage; the continuity of the first two derivatives of the drain current.

Key words: model, JFET, simulation, template, root-mean-square, characterization.


1.     Wehner D.R. High Resolution Radar, 2nd ed. Norwood, Artech Ķīuså. 1995. 593 p.

2.     Sokolov A.V., Lazutkin B.A., Grigoriev V.A. et al. Obnaruzhenie i raspoznavanie obiektov radiolokatsii. [Detection and recognition of radar objects]. Moscow, Radiotekhnika Publ. 2006. 176 p. (In Russian)

3.     N. Ganveer, G. Vishal, R.S. Rao and V. Biradar. SAR implementation using LFM signal. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 20-21 May 2016, pp. 1094–1097. DOI: 10.1109/RTEICT.2016.7808000.

4.     Gruzdov V.V., Kolkovskij Yu.V., Krishtopov A.V., Kudrya A.I. Novye tekhnologii distancionnogo zondirovaniya Zemli iz kosmosa. [New technologies of remote sensing of the Earth from space]. Moscow, Tekhnosfera Publ. 2018. 482 p. (In Russian)

5.     Alexandrov Yu.N., Basilevski A.T., Kotelnikov V.A., Petrov G.M., Rzhiga O.N. and Sidorenko A.I. A planet rediscovered: results of Venus radar imaging from the Venera 15 and Venera 16 spacecraft. Soviet scientific review. Section E. Astrophysics and Space Physics Reviews, 1988, Vol. 6, No. 1, pp. 61–101.

6.     S.F. Li, J. Chen, L.Q. Zhang and Y.Q. Zhou. Image formation algorithm for missile borne MMW SAR with phase coded waveform. 2009 IET International Radar Conference, 20-22 April 2009, pp. 1–4. DOI: 10.1049/cp.2009.0112.

7.     D.A. Garren, P.E. Pace and R.A. Romero. Use of P3-coded transmission waveforms to generate synthetic aperture radar images. 2014 IEEE Radar Conference, 19-23 May 2014, pp. 0765-0768. DOI: 10.1109/RADAR.2014.6875692.

8.     Mozeson E. and Levanon N. Removing autocorrelation sidelobes by overlaying orthogonal coding on any train of identical pulses. IEEE Transactions on Aerospace and Electronic Systems, 2003, Vol. 39, No. 2, pp. 583–603. DOI: 10.1109/TAES.2003.1207268.

9.     Sivaswamy R. Digital and analog subcomplementary sequences for pulse compression. IEEE Transactions on Aerospace and Electronic Systems, 1978, Vol. AES-14, No. 2, pp. 343–350. DOI: 10.1109/TAES.1978.308657.

10. Levanon N., Mozeson E. Radar Signals. Hoboken, Wiley. 2004. 411 p.

11. D. Chebanov, G. Lu. Removing autocorrelation sidelobes of phase-coded waveforms. 2010 IEEE Radar Conference, 10-14 May 2010, pp. 1428–1433. DOI: 10.1109/RADAR.2010.5494391.

12. Ipanov R.N., Baskakov A.I., Olyunin N. and Ka M.-H. Radar Signals With ZACZ Based on Pairs of D-Code Sequences and Their Compression Algorithm. IEEE Signal Processing Letters, 2018, Vol. 25, No. 10, pp. 1560–1564. DOI: 10.1109/LSP.2018.2867734.

13. Ipanov R.N. Pulsed Phase-Shift Keyed Signals with Zero Autocorrelation Zone. Journal of Communications Technology and Electronics, 2018, Vol. 63, No. 8, pp. 895–901. DOI: 10.1134/S1064226918080077.

14.  Tseng C.C. and Liu C.L. Complementary sets of sequences. IEEE Transactions on Information Theory, 1972, Vol. 18, No.5, pp. 644–652. DOI: 10.1109/TIT.1972.1054860.


For citation:
R. N. Ipanov. Sensing signals with zero autocorrelation zone for the synthesized aperture radar. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 8.
Available at http://jre.cplire.ru/jre/aug19/7/text.pdf
DOI  10.30898/1684-1719.2019.8.7