"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 8, 2019

contents of issue      DOI  10.30898/1684-1719.2019.8.9     full text in Russian (pdf)  

On approach to increase integration rate of elements of a two stage amplifier with Miller compensation


E. L. Pankratov 1,2

1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia

2 Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod 603950, Russia


The paper is received on July 10, 2019


Abstract. In this paper we introduce an approach to increase integration rate of elements of a two stage amplifier with Miller compensation. Framework the approach we consider a heterostructure with special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/or radiation defects should be optimized.

Keywords: two stage amplifier with Miller compensation; increasing integration rate of field-effect heterotransistors; optimization of manufacturing.


1. V.I. Lachin, N.S. Savelov. Elektronika [Electronics]. Rostov-on-Don, Feniks Publ., 2001. (In Russian)

2. A.G. Alexenko, I.I. Shagurin. Mikroskhemotekhnika [Microcircuitry]. Moscow, Radio i Svyaz Publ., 1990. (In Russian)

3. N.A. Avaev, Yu.E. Naumov, V.T Frolkin. Osnovy mikroelektroniki [Basis of microelectronics]. Moscow, Radio i Svyaz Publ., 1991.  (In Russian)

4. Z. Wang, H. J., Ch. Zhang, H. Jiang, Zh. Wang. A chopper current feedback instrument amplifier with bandpass amplification stage. Analog. Integr. Circ. Sig. Process. 2014. Vol. 81. No. 3. P. 763-775. DOI: 10.1007/s10470-014-0415-9.

5. D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. 2009. Vol. 4. No. 4. P. 233-238. DOI: https://doi.org/10.1142/S1793292009001708.

6. S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18m two-stage Op-amp. Mat. Sci. Sem. Proc. 2014. Vol. 24. P. 9-14. DOI: https://doi.org/10.1016/j.mssp.2014.02.035.

7. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au-TiBx-n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors. 2009. Vol. 43. No.7. P. 865-871. DOI: https://doi.org/10.1134/ S106378260

8. Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R.F. Karlicek, Jr.T.P. Chow. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl. Phys. Lett. 2013. Vol. 102. No. 19. P. 192107-192109. DOI: https://doi.org/10.1063/1.4807125.

9. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. 2009. Vol. 43. No. 7. P. 939-942. DOI: https://doi.org/10.1134/S1063782609070227.

10. O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. Formation of donor centers upon annealing of dysprosium and holmium-implanted silicon. Semiconductors. 1998. Vol. 32. No. 9. P. 921-923.

11. M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETS Int. J. Nanoscience. 2008. Vol. 7. No. 2-3. P. 81-84. DOI: https://doi.org/10.1142/S0219581X08005195.

12. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 2013. Vol. 102. No. 5.P. 053901-053905. DOI: https://doi.org/10.1063/1.4789855.

13. J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shallow acceptor complexes in p-type ZnO. Appl. Phys. Lett. 2013. Vol. 102. No. 15. P. 152114-152118. DOI: https://doi.org/10.1063/1.4802753.

14. K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 2006. Vol. 89. No. 17. P. 172111-172114. DOI: https://doi.org/10.1063/1.2364834.

15. H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN J. Appl. Phys. 2005. Vol. 98. No. 9. P. 094901-094905. DOI: https://doi.org/10.1063/1.2120893.

16. S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions formed in silicon using pulsed photon annealing. Semiconductors. 2002. Vol. 36. No. 5. P. 581-587. DOI: https://doi.org/10.1134/1.1478552

17. Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and quantum electronics. 2003. Vol. 46. No.3. P. 836-843. DOI: https://doi.org/10.1023/B:RAQE.000.

18. E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in Theoretical Science. 2013. Vol. 1. No.1. P. 58-82. DOI: doi:10.1166/rits.2013.1004.

19. Yu.N. Erofeev. Impulsnye ustroystva [Pulse devices]. Moscow, Vysshaya Shkola, 1989. (In Russian)

20. V.V. Kozlovsky. Modifitsirovanie poluprovodnikov puchkami protonov  [Modification of semiconductors by proton beams]. Sant-Peterburg, Nauka Publ., 2003. (In Russian)

21. Z.Yu. Gotra.  Tekhnologiya mikroelektronnykh ustroistv [Technology of microelectronic devices]. Moscow, Radio I Svyaz Publ., 1991. (In Russian)

22. V.L. Vinetskiy, G.A. Kholodar'. Radiatsionnaya fizika poluprovodnikov [Radiative physics of semiconductors]. Kiev, Naukova Dumka Publ., 1979. (In Russian)

23. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. No. 2. P. 289-388.

24. A.N. Tikhonov, A.A. Samarskii. Uravneniya matematicheskoy fiziki [Mathematical physics equations]. Moscow, Nauka Publ., 1972. (In Russian)

25H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids. London: Oxford University Press1964.

26. E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russian Microelectronics. 2007. Vol. 36. No. 1. P. 33-39. DOI: https://doi.org/10.1134/S1063739707010040

E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. 2008. Vol. 7. No. 4-5. P. 187-197. DOI: https://doi.org/10.1142/S0219581X08005328

27. E.L. Pankratov. Decreasing of Depth of Implanted-Junction Rectifier in Semiconductor Heterostructure by Optimized Laser Annealing J. Comp. Theor. Nanoscience. 2010. Vol. 7. No. 1. P. 289-295.

DOI: https://doi.org/10.1166/jctn.2010.1361

28. E.L. Pankratov. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J. Comp. Theor. Nanoscience. 2017. Vol. 14. No. 10. P. 4885-4899. DOI: https://doi.org/10.1166/jctn.2017.6899

29. E.L. Pankratov. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density of their elements. Advanced science, engineering and medicine. 2017. Vol. 9. No. 9. P. 787-801. DOI: https://doi.org/10.1166/asem.2017.2043

30. E.L. Pankratov, E.A. Bulaeva. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscipline Modeling in Materials and Structures. 2017. Vol. 13. No. 4. P. 664-677. DOI: https://doi.org/10.1108/MMMS-05-2017-0041

31. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. 2013. Vol. 4. No. 1. P. 17-31. DOI: http://dx.doi.org/10.1260/1759-3093.4.1-2.17

32. E.L. Pankratov. On Approach to Optimize Manufacturing of a Modified Circuit of Domino Element to Increase Integration Rate of Field-Effect Heterotransistor. Influence Mismatch-Induced Stress. J. Comp. Theor. Nanoscience. 2017. Vol. 14. No. 10. P. 4839-4853. DOI: https://doi.org/10.1166/jctn.2017.6896

33. E.L. Pankratov, E.A. Bulaeva. An approach to increase the integration rate of planar drift heterobipolar transistors. Materials science in semiconductor processing. 2015. Vol. 34. P. 260-268. DOI: https://doi.org/10.1016/j.mssp.2015.02.054


For citation:

E. L. Pankratov. On approach to increase integration rate of elements of a two stage amplifier with Miller compensation. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 8. Available at http://jre.cplire.ru/jre/aug19/9/text.pdf

DOI  10.30898/1684-1719.2019.8.9