ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2020. № 8
Оглавление выпускаТекст статьи (pdf)
DOI 10.30898/1684-1719.2019.8.5
УДК 621.371+537.87
БЛИЖНЕПОЛЬНОЕ ИМПУЛЬСНОЕ СВЧ ЗОНДИРОВАНИЕ ДИНАМИКИ ПОДПОВЕРХНОСТНОЙ СТРУКТУРЫ ТКАНЕЙ ТЕЛА ПРИ ДЫХАНИИ И СЕРДЕЧНОЙ ДЕЯТЕЛЬНОСТИ
Л. А. Бокерия1, Т. Т. Какучая1, Е. С. Максимович2, В. А. Бадеев2, К. П. Гайкович3
1 Национальный исследовательский центр сердечно-сосудистой хирургии им. А. Н. Бакулева, 121552, Москва, Рублевское шоссе, 135
2 Институт прикладной физики НАН Беларуси, 220072, Минск, ул Академическая, 16
3 Институт физики микроструктур Российской академии наук, 603950, Нижний Новгород, ГСП-105
Статья поступила в редакцию 5 августа 2020 г.
Аннотация. Ближнепольные измерения рассеянного от области грудной клетки моноимпульсного сигнала показали наличие вариаций, связанных с трансформацией диэлектрической структуры тканей в процессах дыхания и сердечной деятельности. Разработан метод восстановления глубинного распределения комплексной диэлектрической проницаемости в многослойной среде с частотной дисперсией, основанный на решении соответствующей обратной задачи рассеяния, и получены первые результаты восстановления вариаций глубинных профилей диэлектрических параметров ткани легких, а также обусловливающих эти вариации параметров их относительного воздухонаполнения или содержания крови.
Ключевые слова: ближнепольное СВЧ зондирование, обратные задачи рассеяния, медико-биологическая диагностика.
Abstract. Near-field measurements of the monosine signal scattered from the thorax detected variations related to the transformation of the dielectric structure of tissues in processes of pulmonary and cardiovascular activity. The method of retrieval of the depth distribution of the complex permittivity in the multilayer medium with the frequency dispersion based on solving the corresponding inverse scattering problem has been developed, and first results of its application have been obtained in the retrieval of variations of depth profiles of dielectric parameters of lung tissues as well as of related parameters of their air- and blood relative content.
Key words: near-field microwave sounding, inverse scattering problems, medical-biological diagnostics.
Литература
1. Gaikovich K.P. Subsurface near-field scanning tomography // Phys. Rev. Letters. 2007. Vol.98. No.18. P.183902.
2. Gaikovich K.P., Gaikovich P.K. Inverse problem of near-field scattering in multilayer media // Inverse Problems. 2010. Vol.26. No.12. P.125013.
3. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Pseudopulse near-field subsurface tomography // Physical Review Letters. 2012. Vol.108. No.16. P.163902.
4. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Subsurface near-field microwave holography // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. Vol.9. No.1. P.74-82.
5. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye. S., Smirnov A.I., and Sumin M.I. Dual regularization in non-linear inverse scattering problems // Inverse Problems in Science and Engineering. 2016. Vol. 24. No.7. P.1215–1239.
6. Gaikovich K.P., Maksimovitch Ye.S., Sumin M.I. Inverse scattering problems of near-field subsurface pulse diagnostics // Inverse Problems in Science and Engineering. 2018. Vol.26. No.11. P.1590-1611.
7. Gaikovich K.P., Smirnov A.I. Inverse problems of low-frequency diagnostics of the Earth’s crust // Radiophysics and Quantum Electronics. 2015. Vol. 58. No.6. P.428-442
8. Gaikovich K.P. Left-handed lens tomography and holography // Inverse Problems in Science and Engineering. 2018. https://doi.org/10.1080/17415977.2018.1552953.
9. Greneker E. F. Radar Sensing of Heartbeat and Respiration at a Distance with Security Applications // Proceedings of SPIE, Radar Sensor Technology II. 1997. Vol.3066. P.22-27.
10. Ivashov S.I., Razevig V.V., Sheyko A.P., Vasilyev I.A. Detection of Human Breathing and Heartbeat by Remote Radar. // Progress in Electromagnetic Research Symposium. March 28 – 31, 2004. Piza, Italy. P.663-666.
11. Iskander M.F., Durney C.H., Shoff D.J., Bragg D.G. Diagnosis of pulmonary edema by a surgically noninvasive microwave technique // Radio Science. 1979. Vol.14. No.6S. P.265-269.
12. Celik N., Gagarin R., Youn H.S., Iskander M.F.A Non-Invasive microwave sensor and signal processing technique for continuous monitoring of vital signs // IEEE Antennas and Wireless Propagation Letters. 2011. Vol.10. P. 286-289.
13. Celik N., Gagarin R., Huang G. Ch., et al. Microwave stethoscope: Development and Benchmarking of a vital signs sensor using computer-controlled Phantoms and human studies // IEEE Transactions on Biomedical Engineering. 2014. Vol.61. No.8. P.2341–2349.
14. Perron R.R.G., Iskander M.F., Seto T.B., Huang G.C., Bibb D.A. Electromagnetics in Medical Applications: The Cardiopulmonary Stethoscope Journey // In: Lakhtakia A., Furse C., editors. The World of Applied Electromagnetics. Springer, Cham. 2018. Ch.18. P.443-479.
15. Gabriel C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies // Report N.AL/OE-TR-1996-0037. Occupational and environmental health directorate, Radiofrequency Radiation Division. Brooks Air Force Base, Texas (USA). 1996.
Для цитирования:
Бокерия Л.А., Какучая Т.Т., Максимович Е.С., Бадеев В.А., Гайкович К.П. Ближнепольное импульсное СВЧ зондирование динамики подповерхностной структуры тканей тела при дыхании и сердечной деятельности. Журнал радиоэлектроники [электронный журнал]. 2020. №8. https://doi.org/10.30898/1684-1719.2020.8.5