ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2021. № 8
Оглавление выпуска

Текст статьи (pdf)

English page

 

DOI: https://doi.org/10.30898/1684-1719.2021.8.16  

УДК: 621.371+537.87

 

ДИНАМИЧЕСКАЯ БЛИЖНЕПОЛЬНАЯ СВЧ ДИАГНОСТИКА ЛЕГКИХ

 

Л. А. Бокерия 1, Т. Т. Какучая 1, А. М. Куулар 1,

Е. С. Максимович 2, В. А. Бадеев 2, К. П. Гайкович 3

 

1 Национальный исследовательский центр сердечно-сосудистой хирургии им.

А. Н. Бакулева, Рублевское шоссе, 135, Москва, 121552, Россия

2 Институт прикладной физики НАН Беларуси, ул. Академическая, 16,

Минск, 220072, Республика Беларусь

3 Институт физики микроструктур Российской академии наук, ГСП-105,

г. Нижний Новгород, 603950, Россия

 

Статья поступила в редакцию 19 июля 2021 г.

 

Материалы статьи были частично доложены на XIV Всероссийской конференции «Радиолокация и радиосвязь»

(ИРЭ им. В.А. Котельникова РАН, Москва, 23-25 ноября 2020 г.) – см. Труды конференции, с. 44-48.

 

Аннотация. Представлены результаты теоретических и экспериментальных исследований метода ближнепольной СВЧ томографии грудной клетки. Получены интегральные уравнения обратных задач томографии трехмерных неоднородностей кровесодержания и воздухонаполнения легких по данным многосенсорных измерений. Предложены методы и исследованы в численном моделировании алгоритмы решения обратных задач профилирования воздухонаполнения и кровесодержания легких в процессах дыхания и работы сердца по однопозиционным бистатическим измерениям рассеянного сигнала. Выполнены многочастотные и импульсные измерения динамики рассеянных сигналов в процессах дыхания и сердечной деятельности. По данным бистатических измерений параметров рассеянного от области грудной клетки сигнала было выполнено профилирование относительного воздухонаполнения и кровесодержания легких. Рассмотрены возможные применения метода в медико-биологической диагностике.

Ключевые слова: ближнепольное СВЧ зондирование, обратные задачи рассеяния, медико-биологическая диагностика, томография легких.

Abstract. Results of theoretical and experimental studies of the method of the near-field microwave tomography of the thorax are presented. Integral equations of inverse tomography problem of 3D blood- and air content inhomogeneities by data of multisensory measurements are obtained. Methods of air and blood content profiling in processes of breathing and heart activity by data of bistatic measurements of the scattered signal are proposed and solving algorithms of inverse problems are studied in the numerical simulation. Multifrequency and pulse measurements of scattered signals are carried out in processes of cardiorespiratory activity. By data of bistatic measurements of scattered signals parameters from the thorax, profiling relative air- and blood content profiles has been realized. Application possibilities of the method in the biomedical diagnostics are considered.

Key words: near-field microwave sounding, inverse scattering problems, medical-biological diagnostics, tomography of lungs.

 

Литература

 

1. Gaikovich K.P. Subsurface near-field scanning tomography. Physical Review Letters. 2007. V.98. №18. P.183902. https://doi.org/10.1103/PhysRevLett.98.183902

2. Gaikovich K.P., Gaikovich P.K. Inverse problem of near-field scattering in multilayer media. Inverse Problems. 2010. V.26. №12. P.125013. https://doi.org/10.1088/0266-5611/26/12/125013

3. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Pseudopulse near-field subsurface tomography. Physical Review Letters. 2012. V.108. №16. P.163902.

    https://doi.org/10.1103/PhysRevLett.108.163902

4. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Badeev V.A. Subsurface near-field microwave holography. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. V.9. №1. P.74-82. https://doi.org/10.1109/JSTARS.2015.2443035

5. Gaikovich K.P., Gaikovich P.K., Maksimovitch Ye.S., Smirnov A.I., and Sumin M.I. Dual regularization in non-linear inverse scattering problems. Inverse Problems in Science and Engineering. 2016. V.24. №7. P.1215-1239. https://doi.org/10.1080/17415977.2016.1160389

6. Gaikovich K.P., Maksimovitch Ye.S., Sumin M.I. Inverse scattering problems of near-field subsurface pulse diagnostics. Inverse Problems in Science and Engineering. 2018. V.26. №11. P.1590-1611. https://doi.org/10.1080/17415977.2017.1417405

7. Gaikovich K.P., Smirnov A.I. Inverse problems of low-frequency diagnostics of the Earth’s crust. Radiophysics and Quantum Electronics. 2015. V.58. №6. P.428-442.

    https://doi.org/10.1007/s11141-015-9617-y

8. Gaikovich K.P. Left-handed lens tomography and holography. Inverse Problems in Science and Engineering. 2020. V.28. №3. P.296-313 https://doi.org/10.1080/17415977.2018.1552953

9. Greneker E.F. Radar Sensing of Heartbeat and Respiration at a Distance with Security Applications. Proceedings of SPIE. Radar Sensor Technology II. 1997. V.3066. P.22-27. https://doi.org/10.1117/12.276106

10. Gaikovich K.P., Maksimovitch Ye.S., Badeev V.A. Near-field subsurface tomography and holography based on bistatic measurements with variable base. Inverse Problems in Science and Engineering. 2021. V.29. №5. P.663-680. https://doi.org/10.1080/17415977.2020.1800686

11. Ivashov S.I., Razevig V.V., Sheyko A.P., Vasilyev I.A. Detection of Human Breathing and Heartbeat by Remote Radar. Progress in Electromagnetic Research Symposium. 2004. Pisa, Italy. March 28 - 31. P.663-666. http://www.rslab.ru/downloads/piers2004_68_03.pdf

12. Iskander M.F., Durney C.H., Shoff D.J., Bragg D.G. Diagnosis of pulmonary edema by a surgically noninvasive microwave technique. Radio Science. 1979. V.14. №6S. P.265-269.

      https://doi.org/10.1029/RS014i06Sp00265

13. Celik N., Gagarin R., Youn H.S., and Iskander M.F. A Non-Invasive microwave sensor and signal processing technique for continuous monitoring of vital signs. IEEE Antennas and Wireless Propagation Letters. 2011. V.10. P.286-289. https://doi.org/10.1109/LAWP.2011.2132690

14. Celik N., Gagarin R., Huang G. Ch., et al. Microwave stethoscope: Development and Benchmarking of a vital signs sensor using computer-controlled Phantoms and human studies. IEEE Transactions on Biomedical Engineering. 2014. V.61. №8. P.2341-2349. https://doi.org/10.1109/TBME.2013.2241763

15. Perron R.R.G., Iskander M.F., Seto T.B., Huang G.C., Bibb D.A. Electromagnetics in Medical Applications: The Cardiopulmonary Stethoscope Journey. In: Lakhtakia A., Furse C. (eds) The World of Applied Electromagnetics. Springer, Cham, Ch.18. P.443-479.2018. https://doi.org/10.1007/978-3-319-58403-4_18

16. Bokeria L.A., Kakuchaya T.T., Badeev V.A., Maksimovicth Ye.S., Smirnov A.S., Gaikovich K.P. Achievements and Prospects in Near-Field Subsurface Diagnostics. 21st International Conference on Transparent Optical Networks (ICTON). 2019. P.1-4. https://doi.org/10.1109/ICTON.2019.8840017

17. Бокерия Л.А., Какучая Т.Т., Максимович Е.С., Бадеев В.А., Гайкович К.П. Ближнепольное импульсное СВЧ зондирование динамики подповерхностной структуры тканей тела при дыхании и сердечной деятельности. Журнал радиоэлектроники [электронный журнал]. 2020. №8. https://doi.org/10.30898/1684-1719.2020.8.5

18. Gabriel C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Report N.AL/OE-TR- 1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas, USA. 1996. https://doi.org/10.21236/ada303903

19. Sihvola A. Mixing Rules with Complex Dielectric Coefficient. Subsurface Sensing. Technologies and Applications. 2000. V.1. №4. P.393-415. https://doi.org/10.1023/A:1026511515005

20. Hirsch F.W., Frahm J., Sorge I., et al. Real-time magnetic resonance imaging in pediatric radiology - new approach to movement and moving children. Pediatric Radiology. 2021. V.51. №5. P.840-846. https://doi.org/10.1007/s00247-020-04828-5

21. Weissman C. Pulmonary complications after cardiac surgery. Seminars in Cardiothoracic and Vascular Anesthesia. 2004. V.8. №3. P.185-211.

      https://doi.org/10.1177%2F108925320400800303

 

Для цитирования:

Бокерия Л.А., Какучая Т.Т., Куулар А.М., Максимович Е.С., Бадеев В.А., Гайкович К.П. Динамическая ближнепольная СВЧ диагностика легких. Журнал радиоэлектроники [электронный журнал]. 2021. №8. https://doi.org/10.30898/1684-1719.2021.8.16