Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 8
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2021.8.20

UDC: 2.11.02.13.0714

 

SOLID-STATE MAGNETIC MATERIALS

FOR MAGNETIC LEVITATION TRANSPORT

 

Karpukhin D. A. 1,2, Petrov A. O. 1,2, Koledov V. V. 1,2, Suslov D. A. 1,2, Shavrov V. G. 1,

Terentyev Yu.A.1,2, Fongratovsky S. V. 1,2, Herman I. V. 1,2, Dilmieva E. T. 1,2,

Kamantsev A. P. 1,2, Laryukhin V. S. 2,3, Babachanakh A. V. 2,4, Balabanov V. K. 2,5,

Kurenkov P. V. 4, Kamynin A. V. 6, Samvelov A. V. 7, Yasev S. G. 7, Malineckij G. G. 8,

Sysoev M. A. 3, Shillo S. V. 3, Nizhel'skij N. A. 3, Brazhnik P. S. 9, Zimenkova T. S. 10,

Drozdov B. V. 11, Kovalev K. L. 12, Poltavec V. N. 12, Il'yasov R. I. 12, Safonov A. A. 13,

Palchaev D. K. 14, Ivanov D. V. 15, Yakovlev K. Yu. 15

 

1 Kotel'nikov institute of radio engineering and electronics of RAS,

125009, Moscow, ul. Mohovaya 11, korp. 7

2 Sirius University of Science and Technology, 354340, Sochi, Olimpijskij prospekt 1

3 Bauman Moscow State Technical University, 105005, Moscow, ul. 2-ya Baumanskaya 5

4 Russian university of transport (MIIT), 127005, Moscow, ul. Obrazcova 9, str. 9

5 Samarskij nacional'nyj issledovatel'skij universitet im. Akademika S.P. Koroleva,

443086, Samara, Moskovskoe shosse 34

6 AO «Specmagnit», 127238, Moskow, Dmitrovskoe sh. 58

7 AO OKB «ASTRON», 14080, Moskovskaya obl., g. Lytkarino, ul. Parkovaya 1

8 IPM im. M.V. Keldysha RAN, 125047, Moskow, Miusskaya pl. 4

9 NIC Kurchatovskij institut, 123182, Moskva, pl. Akademika Kurchatova 1

10 Peterburgskij gosudarstvennyj universitet putej soobshcheniya,

190031, Sankt-Peterburg, Moskovskij prospect 9

11 Institut Informacionno-analiticheskih tekhnologij,

119571, Moskow, prospekt Vernadskogo 86

12 Moskovskij Aviacionnyj Institut (MAI), 125993, Moskow, Volokolamskoe shosse 4

13 AO «Neva Tekhnologiya», 192007, Sankt-Peterburg, ul. Tambovskaya 13

14 Dagestanskij Gosudarstvennyj Universitet, 367000, Mahachkala, ul. M. Gadzhieva 43-a

15 OOO «Lazerkat», Moskow, per Chistyj 3

 

The paper was received August 23, 2021

 

Abstract. Study and implementation of innovative systems of environmentally friendly and energy-efficient transport based on magnetic levitation, the principle of operation of which is based on the use of new solid-state magnetic materials based on compounds of rare earth materials, in particular materials with high-temperature superconductivity based on Y, permanent magnets based on Nd and Sm and magnetocaloric alloys based on Dy, Tb are of great interest throughout the world. In this work, the basic principles of magneto-levitation transport with the most economical principle of acceleration and deceleration - gravitational - are studied experimentally on mock-ups. The strength characteristics were measured: the levitation force and the lateral stabilization force, as well as losses during periodic translational motion of a cryostat with high-temperature superconducting elements made of ceramic material Y-Ba-Cu-O over the paths of permanent magnets made of the rare-earth compound Nd-Fe-B. A system for measuring the speed and compensation of losses for the implementation of continuous motion has been created and tested. The presented results indicate the possibility of scaling the layout project. It is concluded that the investigated scheme may be of practical interest for intracity and local transport communication with high comfort, environmental friendliness and record economy in the case of a successful solution of the problem of cooling HTSC elements to the temperature of the phase transition to the superconducting state, for example, using new principles of solid-state magnetic cooling based on compounds Dy-N, Tb-Ni, etc.

Key words: magnetolevitation transport, HTSP, YBaCuO, second-order superconductivity, NdFeB, gravitational acceleration and deceleration

References

1. Terentyev Y.A., Filimonov V.V., Shavrov V.G., Koledov V.V., Fongratowski S.V., Suslov D.A., et. al. Current Status and Prospects for the Development of the Integrated Transit Transport System (ITTS) of Russia on the Basis of Vacuum Magnetic Levitation Transport (VMLT). Transportnye sistemy i tekhnologii. [Transportation Systems and Technology]. 2019. V.5. №4. P.25-62. https://doi.org/10.17816/transsyst20195425-62 (In Russian)

2. Bernstein P., Noudem J. Superconducting magnetic levitation: principle, materials, physics and models. Superconductor Science and Technology. 2020. V.33. 3. P.033001. http://doi.org/10.1088/1361-6668/ab63bd

3. U.S. Patent №6418857. Okano Makoto, Noriharu Tamada. Superconductive magnetic levitation transportation system. Applied 29.09.2000. Published 16.08.2002. 11 p.

4. Salter Robert M. Transplanetary subway systems. Futures. 1978. V.10. №5. P.405-416. https://doi.org/10.1016/0016-3287(78)90006-X

5. Mattos L.S., Rodriguez E., Costa F., Sotelo G.G., De Andrade R., Stephan R.M. MagLev-Cobra operational tests. IEEE Transactions on applied superconductivity. 2016. V.26. №3. P.1-4. https://doi.org/10.1109/TASC.2016.2524473

6. Fernandes J., et al. Superconductor joule losses in the zero-field-cooled maglev vehicle. IEEE Transactions on Applied Superconductivity. 2016. V.26. №3. P.1-7. https://doi.org/10.1109/TASC.2016.2528991

7. Gieras J. F. Ultra-high-speed ground transportation systems: Current Status and a vision for the future. Przeglad Elektrotechniczny. 2020. №9. P.1-7. http://doi.org/10.15199/48.2020.09.01

8. Bogachev V.A., Terentyev Y.A., Koledov V.V., Bogachev T.V. (2019). New Dzungaria Gates for wmlt-corridor: historical necessity. Transportnye sistemy i tekhnologii [Transportation Systems and Technology]. 2019. V.5. №3. P.36-44. https://doi.org/10.17816/transsyst20195336-44 (In Russian)

9. Suslov D.A., Shavrov V.G., Koledov V.V., Mashirov A.V., Terentyev Yu.A., et. al. Comparison of thermodynamic efficiency of cryogenic gas and solid-state magnetocaloric cycles. Chelyabinskii fiziko-matematicheskii zhurnal [Chelyabinsk Physics and Mathematics Journal]. 2020. V.5. №4-2. P.612-617 https://doi.org/10.47475/2500-0101-2020-15420 (In Russian)

10. Kolesov K.A., Mashirov A.V., Koledov V.V., et. al. Determination of heat transfer parameters in the mechanical heat switchfor a refrigerating machine with magnetocaloric effect. Chelyabinskii fiziko-matematicheskii zhurnal [Chelyabinsk Physics and Mathematics Journal]. 2021 Т.6. №1. P.111-118. https://doi.org/10.47475/2500-0101-2021-16109 (In Russian)

For citation:

Karpukhin D.A., Petrov A.O., Koledov V.V., Suslov D.A., Shavrov V.G., et. al. Solid-state magnetic materials for magnetic levitation transport. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №8. https://doi.org/10.30898/1684-1719.2021.8.20 (In Russian)