Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 8
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2021.8.7

UDC: 621.385.69

 

THREE-GAP RESONATOR FOR MINIATURE MULTI-BEAM KLYSTRON

 

A.Yu. Miroshnichenko, M.A. Chernyshev, V.A. Tsarev, N.A. Akafyeva

 

Yuri Gagarin State Technical University of Saratov

410054, Saratov, st. Polytechnic, 77

 

The paper was received July 6, 2021

 

Abstract. The paper presents the results of a study of a three-gap resonator for a miniature multi-beam klystron. A feature of the resonator is the use in the construction of a suspended dielectric substrate with strip resonant conductors located on it. The main electrodynamic parameters of the resonator were calculated. The analysis of the high-frequency electric field along the interaction space is carried out for each of the modes. For the antiphase and in-phase modes, the possibility of tuning the resonator to multiple resonant frequencies is shown. Electronic parameters were calculated for the frequency multiplicity mode. The investigated resonator can find application in miniature multi-beam klystrons of the centimeter and millimeter range.

Key words: three-gap resonator, miniature multi-beam klystron, suspended dielectric substrate, strip conductor, antiphase mode, in-phase mode.

References

1. Parker R.K., Abrams R.H. The Navy’s role in vacuum tube electronic program. Microwave Journal. 1992. Vol.35. №3. Р.82-92.

2. Gelvich E.A. High power microwave CMD. Elektronnaya Tekhnika. Seriya 1, Elektronika SVCH [Electronic equipment. Series 1, Microwave electronics]. 1982. №12 (348). P.18-24. (In Russian)

3. Kotov A.S., Gelvich E.A., Zakurdayev A.D. Small-size complex microwave devices (CMD) for onboard applications. IEEE transactions on electron devices. 2007. Vol.54. №5. Р.1049-1053. https://doi.org/10.1109/TED.2007.893196

4. Korolyov A.N., Gelvich E.A., Zhary Y.V., Zakurdayev A.D., Poognin V.I. Multiple-beam klystron amplifiers: Performance parameters and development trends. IEEE Transactions on Plasma Science. 2004. №3. P.1109-1118.

https://doi.org/10.1109/TPS.2004.828807

5. Vostrov M.S. Broadband miniature multibeam klystron of 2-cm wavelength range with a bandwidth of at least 300 MHz and an uneven output power of no more than 1.5 dB. Proceedings of International Scientific and Technical Conference «Aktual'nye problemy elektronnogo priborostroeniya APEP-2018» [2018 International Conference on Actual Problems of Electron Devices Engineering (APEDE)]. Saratov. 2018. P.232-236.

https://doi.org/10.1109/APEDE.2018.8542258 (In Russian)

6. Bandyopadhyay A.K., Pal D., Saini A., Kant D. Saha S., Joshi L.M. Design of a Ku band miniature multiple beam klystron. Advancement in science and technology: Proceedings of the 2nd International Conference on Communication Systems (ICCS-2015). Rajasthan, India. 2016. №1715 (1). Р.020052.

https://doi.org/10.1063/1.4942734

7. Tsarev V.A., Chigurov I.O., Shalaev P.D. Improvement of the output parameters of a multi-beam amplifying pulsed small-sized Ku-band klystron. Radiotekhnika [Journal Radioengineering]. 2015. №7. P.41-44. (In Russian)

8. Grigoriev A.D. Multi-gap resonators for powerful amplifying klystrons of the millimeter wavelength range. Proceedings of III All-Russian Scientific and Technical Conference «Elektronika i mikroelektronika SVCH» [Microwave electronics and microelectronics]. St. Petersburg. 2014. P.131-135. (In Russian)

9. Rakova E.A., Galdetsky A.V., Korepin G.F., Smirnov V.A., Zubkov N.P., Lyabin N.A., Paramonov V.S., Deryabkin A.V., Kulikov E.N., Dukhnovsky M.P. Designing and research the manufacturing technology of a promising slow-wave structure for W-band TWT. Proceedings of V All-Russian Scientific and Technical Conference “Elektronika i mikroelektronika SVCH» [Microwave electronics and microelectronics]. St. Petersburg. 2016. P.148-152. (In Russian)

 

For citation:

Miroshnichenko A.Yu., Chernyshev M.A., Tsarev V.A., Akafyeva N.A. Three-gap resonator for miniature multi-beam klystron. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.8. https://doi.org/10.30898/1684-1719.2021.8.7 (In Russian)