Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №8
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.8.13

 

MODELING OF A RESONANT SPIRAL
ELECTRICALLY SMALL ANTENNA

 

A.V. Kolesnikov 1, D.V. Fedosov 1, A.V. Nikolaev 2,3

 

1 HF-COMMUNICATIONS
644012, Russia, Omsk, Akademika Koroleva Ave., 32

2 Moscow Technical University of Communications and Informatics
111024, Russia, Moscow, Aviamotornaya street, 8a

3 Fedorov Institute of Applied Geophysics
129128, Russia, Moscow, Rostokinskaya str., 9

 

The paper was received May 26, 2022

 

Abstract. Currently, the development of methods and means of data transmission through absorbing media and shielding obstacles for organizing wireless communication and remote control of technological equipment and industrial robots, including those in the mining industry, is an urgent area of research. As experimental studies in mine workings have shown, radio systems with high-quality tuned resonant antennas from hundreds of kHz to several of MHz with a narrow operating frequency band suitable for transmitting low-speed signals turned out to be promising. In this article, a model of a resonant helical electrically small antenna (ESA) with an electrical size of 0.025 is considered. An equivalent circuit of this antenna is presented using an analytical description of its components. The results of a full-wave finite element analysis of a helical ESA using finite conductivity boundary are presented. Graphs are constructed that explain the resonant increase in the efficiency of the antenna. The obtained values of the efficiency of the spiral ESA are sufficient to create means of data transmission through absorbing media and imperfectly shielding obstacles.

Key words: electrically small antennas, spiral antennas, efficiency, underground communication, danger zone, shielding obstacles.

Corresponding author: Kolesnikov Andrey Viktorovich, kolesnikov.radio@yandex.ru

 

References

1. Slyusar V. 60 years of the theory of electrically small antennas. Some results. Ehlektronika: NTB [Electronics: STB]. 2006. №7. P.10-19. (In Russian)

2. Volakis J., Chen Chi-Ch, Fujimoto K. Small Antennas: Miniaturization Techniques & Applications. McGraw-Hill. 2010. 428 p.

3. Hansen R.C. Electrically Small, Superdirective, and Superconducting Antennas. Wiley-Interscience. 2006. 168 p.

4. Klimov К.N., Godin А.S., Gezha D.S. Electrically small antennas. Part 1. Journal Achievements of Modern Radioelectronics [The successes of modern radio electronics]. 2016. №6. P.47-62. (In Russian)

5. Klimov К.N., Godin А.S., Gezha D.S. Electrically small antennas. Part 2. Journal Achievements of Modern Radioelectronics [The successes of modern radio electronics]. 2016. №7. P.17-34. (In Russian)

6. Schab K., Jelinek L., Capek M., Ehrenborg C., et al. Energy stored by radiating systems. IEEE Access. 2018. V.6. P.10553-10568. https://doi.org/10.1109/ACCESS.2018.2807922

7. Buzov A.L., Bukashkin S.A. Spetsial'naya radiosvyaz'. Razvitie i modernizatsiya oborudovaniya i ob"ektov [Special radio communication. Development and modernization of equipment and facilities]. Moscow, Radiotekhnika. 2017. 448 p. (In Russian)

8. Buzov A.L. Antenna-feeder devices for special HF, VHF and UHF radio communication: problems and trends. Electrosvyaz [Telecommunications]. 2013. №12. P.20-26. https://elsv.ru/assets/uploads/2015/06/20-261.pdf (In Russian)

9. Korchagin YU.A., Salomatov V.P., Chernov A.A. Radiosvyaz' v provodyashchikh sredakh [Radio communication in conductive media]. Novosibirsk, Nauka. 1990. 148 p. (In Russian)

10. Fedosov D.V., Nikolaev A.V., Kolesnikov A.V., Lapin S.E., Babenko A.G. Review of methods for organizing of underground communications and prospects for using the medium wave range in mines. Trudy Nauchno-Issledovatel'skogo Instituta Radio [Proceedings of The Scientific Research Institute of Radio]. 2022. №1. P.19-36. https://doi.org/10.34832/NIIR.2022.8.1.003 (In Russian)

11. Fedosov D.V., Kolesnikov A.V., Nikolaev A.V. Existing and prospective antenna solutions for communication in underground mine workings. Ehlektronnye sredstva i sistemy upravleniya. Materialy dokladov Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Electronic means and control systems. Materials of the reports of the International Scientific and Practical Conference]. 2020. №1-1. P.121-124. (In Russian)

12. Patent RF №2680674. Fedosov D.V., Kolesnikov A.V., Nikolaev A.V. Rezonansnaya spiral'naya antenna [Resonant spiral antenna]. Application Date: 14.03.2018. Publication Date: 25.02.2019. URL: https://www1.fips.ru/registers-doc-view/fips_servlet (In Russian)

13. Kazanskii L.S. Teoriya modelirovaniya antenno-fidernykh ustroistv LC-tsepyami s poteryami, ikh proektirovanie i tekhnicheskaya realizatsiya v VCH-diapazone [The theory of modeling of antenna-feeder devices by LC-circuits with losses, their design and technical implementation in the HF range]. Dissertation for the degree of Doctor of Technical Sciences thesis. Samara, Research Institute of Radio in Samara. 1998. 378 p. (In Russian)

14. Tang T.G., Tieng Q.M., Gunn M.W. Equivalent Circuit of a Dipole Antenna Using Frequency-Independent Lumped Elements. IEEE Transactions on antennas and propagation. 1993. V.41. №1. P.100-103. https://doi.org/10.1109/8.210122

15. Hamid M., Hamid R. Equivalent circuit of dipole antenna of arbitrary length. IEEE Transactions on antennas and propagation. 1997. V.45. №11. P.1695-1696. https://doi.org/10.1109/8.650083

16. Oh J., Choi J., Dagefu F.T., Sarabandi K. Extremely Small Two-Element Monopole Antenna for HF Band Applications. IEEE Transactions on antennas and propagation. 2013. V.61. №6. P.2991-2999. https://doi.org/10.1109/TAP.2013.2249034

17. Archimedes' Spiral [web]. Wolfram MathWorld. Date of access: 22.05.2022. URL: https://mathworld.wolfram.com/ArchimedesSpiral.html

18. Nemtsov M.V. Spravochnik po raschetu parametrov katushek induktivnosti [Handbook for calculating the parameters of inductors]. Moscow, Ehnergoatomizdat. 1989. 92 p. (In Russian)

19. Glikman I.Ya., Rusin Yu.S. Raschet kharakteristik ehlementov tsepei radioehlektronnoi apparatury [Calculation of characteristics of elements of circuits of radio-electronic equipment]. Moscow, Soviet radio. 1976. 160 p. (In Russian)

20. Kalantarov P.L., Tseitlin L.A. Raschet induktivnostei: Spravochnaya kniga [Calculation of inductances: Reference book]. Leningrad, Ehnergoatomizdat. 1986. 488 p. (In Russian)

21. Iossel' Yu.Ya., Kachanov E.S., Strunskii M.G. Raschet ehlektricheskoi emkosti [Calculation of electrical capacity]. Leningrad, Ehnergoatomizdat. 1981. 288 p. (In Russian)

22. Murav'ev Yu.K. Spravochnik po raschetu provolochnykh antenn [Handbook for calculating wire antennas]. Leningrad, HAC. 1978. 392 p. (In Russian)

23. Balanis C. A. Antenna theory. Analysis and Design. John Wiley & Sons, Inc. 2016.

24. Smith G. S. Radiation efficiency of electrically small multiturn loop antennas. IEEE Transactions on Antennas and Propagation. 1972. V.AP-20. №5. P.656-657. https://doi.org/10.1109/TAP.1972.1140293

25. Bartoli M., Noferi N., Reatti A., Kazimierczuk M.K. Modeling litz-wire winding losses in high-frequency power inductors. PESC Record. 27th Annual IEEE Power Electronics Specialists Conference. 1996. P.1690-1696. https://doi.org/10.1109/PESC.1996.548808

26. Wojda R.P., Kazimierczuk M.K. Winding resistance of litz-wire and multi-strand inductors. IET Power electronics. 2012. V.5. №2. P.257-268. https://doi.org/10.1049/iet-pel.2010.0359

27. Robkopf A., Bar E., Joffe Ch., Bonse C. Calculation of power losses in litz wire systems by coupling FEM and PEEC method. IEEE Transactions on power electronics. 2016. V.31. №9. P.6442-6449. https://doi.org/10.1109/TPEL.2015.2499793

28. Chebyshev V.V. Osnovy proektirovaniya antennykh sistem [Fundamentals of designing antenna systems]. Moscow, Goryachaya liniya-Telekom. 2018. 150 p. (In Russian)

29. Kolesnikov A.V. Operational characteristics of small-sized antenna devices of the medium frequency range in mines. Trudy Nauchno-Issledovatel'skogo Instituta Radio [Proceedings of The Scientific Research Institute of Radio]. 2021. №4. P.49-60. https://doi.org/10.34832/NIIR.2021.7.4.006 (In Russian)

30. Patent RF №2758986. Fedosov D.V., Kolesnikov A.V., Shevelev O.V.,Dmitriev P.V. Sposob izgotovleniya katushek induktivnosti i katushka induktivnosti [Method for manufacturing induction coils and induction coil]. Application Date: 26.10.2020. Publication Date: 08.11.2021. URL: https://www1.fips.ru/registers-doc-view/fips_servlet (In Russian)

31. Nikolaev A.V., Fedosov D.V., Shevelev O.V., Kolesnikov A.V., Dmitriev P.V. Additive technology for manufacturing inductive coils for antennas of promising radio systems. Problemy mashinostroeniya i avtomatizatsiya [Journal of Machinery Manufacture and Reliability]. 2022. №1. P.85-90. https://doi.org/10.52261/02346206_2022_1_85 (In Russian)

For citation:

Kolesnikov A.V., Fedosov D.V., Nikolaev A.V. Modeling of a resonant spiral electrically small antenna. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №8. https://doi.org/10.30898/1684-1719.2022.8.13 (In Russian)