

DOI: https://doi.org/10.30898/1684-1719.2022.8.2

УДК 681.883.45

ПОМЕХОУСТОЙЧИВОСТЬ КОГЕРЕНТНОГО ПРИЕМА ДВОИЧНЫХ СИГНАЛОВ С ПРЯМОУГОЛЬНОЙ ОГИБАЮЩЕЙ В ГИДРОАКУСТИЧЕСКОМ КАНАЛЕ СВЯЗИ

В.Е. Денисов

МИРЭА - Российский технологический университет 119454, Москва, пр. Вернадского, 78

Статья поступила в редакцию 22 июня 2022 г.

Аннотация. Цели. Основной целью данной работы является разработка методики определения параметров двоичных сигналов, при которых сигналы становятся относительно инвариантными к частотным искажениям в морской Частотные искажения сигналов обусловлены неравномерностью частотной характеристики затухания морской среды. Главной частью указанной методики является оценка влияния частотных искажений сигналов на помехоустойчивость приема. В соответствии с этим определяются вероятности ошибки приемников сигналов c различными видами манипуляции, которые оптимальны при отсутствии искажений. Методы. Использованы гидроакустики, положения прикладной теории случайных процессов теории передачи дискретных сообщений. И Основное содержание. В работе рассматривалась модель однолучевого гидроакустического канала связи, характерная для глубокого моря, когда приемник или передатчик расположен в глубине моря. В качестве коэффициента коэффициент используется передачи гауссовской передачи канала характеристикой линейной амплитудно-частотной И фазо-частотной характеристикой. Определены вероятности ошибки

когерентных приемников двоичных сигналов с амплитудной, частотной и фазовой манипуляцией с прямоугольной огибающей. В качестве приемников рассматриваются когерентные приемники, оптимальные критерию максимального правдоподобия при действии белого гауссовского шума и отсутствии искажений в морской среде. Введена логарифмическая мера ошибки, увеличения вероятности которая характеризует ухудшение помехоустойчивости за счет частотных искажений в канале. Для некоторых типичных случаев определены значения параметров сигналов, относительно инвариантных К частотным искажениям В морской среде. Результаты. Найдены ошибки выражения вероятности когерентных приемников двоичных сигналов с амплитудной, частотной и фазовой манипуляцией с прямоугольной огибающей. Введена логарифмическая мера относительного увеличения вероятности ошибки по сравнению со случаем отсутствия искажений. Определена функциональная зависимость этой меры от длительности посылки сигнала, несущей частоты и начальной фазы сигнала, а также от дальности связи и отношения сигнал/шум. На плоскости несущая частота, длительность сигнала, для каждого вида сигнала построена граница области, выше которой сигналы являются относительно инвариантными к морской искажениям Для частотным В среде. дальностей связи R = 1,5 км и 3 км и типичных несущих частот приведены минимальные значения длительности инвариантных сигналов.

Ключевые слова: гидроакустический канал связи, коэффициент затухания, помехоустойчивость, вероятность ошибки, дальность связи, длительность посылки сигнала, несущая частота, начальная фаза.

Автор для переписки: Денисов Валерий Евгеньевич, dvemirea@mail.ru

Введение

Цифровые гидроакустические системы связи в настоящее время широко применяются на практике. Многие вопросы проектирования таких систем решаются эвристически на основе имеющегося опыта и путем моделирования на ЭВМ. Однако всегда интересно получить аналитическое решение поставленной задачи, хотя бы и на основе известных приближений. К таким задачам в случае гидроакустических систем связи относится проблема выбора сигналов с манипуляции, относительно различными видами инвариантных неравномерности частотной характеристики затухания морской среды. Решение этой задачи позволит получить теоретическую базу для корректного выбора параметров сигналов с различными видами модуляции. Для решения данной задачи необходимо проанализировать влияние неравномерности частотной характеристики морской среды на помехоустойчивость приемника, оптимального при отсутствии искажений. В данной работе и решается подобная задача на примере когерентного приемника двоичных сигналов с амплитудной (АМ), частотной (ЧМ) и фазовой (ФМ) манипуляцией и прямоугольной огибающей. В качестве приемника рассматривается когерентный приемник, оптимальный по критерию максимального правдоподобия при действии белого гауссовского шума и отсутствии искажений в морской среде. В работе определяются вероятности ошибки данного приемника, опорные сигналы которого совпадают по форме с неискаженными сигналами, но уменьшены в соответствии с коэффициентом затухания на несущей частоте. В качестве модели гидроакустического канала связи (ГАКС) рассматривается однолучевой канал, характеризуемый только частотно зависимым коэффициентом затухания. Данной моделью можно описать вертикальные и близкие к ним каналы [1].

1. Коэффициент передачи и импульсная характеристика гидроакустического канала связи

В качестве гидроакустического канала связи (ГАКС) рассматривается совокупность передающей антенны, морской среды и приемной антенны.

Антенны считаются ненаправленными и частотно независимыми. Используется модель морской среды в виде однородной изотропной среды. В этом случае свойства ГАКС можно описать единственной величиной — коэффициентом затухания $\alpha(f)$. Используя аппроксимацию $\alpha(f)$ функцией $\alpha(f) = B_K + D_K f^2$, где f — частота в килогерцах из работы [2], можно представить комплексный коэффициент передачи ГАКС $H(j\omega)$ в форме, удобной для аналитических исследований

$$H(j\omega) = H(0) \exp\left(-a\,\omega^2 - j\omega\,t_3\right),\tag{1}$$

где ω – угловая частота, рад/с;

$$H(0) = (R_0 / R) \exp(-0.115B_K R); \ a = 0.115(2\pi)^{-2} 10^{-6} D_K R; \tag{2}$$

 $t_3 = R/C$; R — расстояние между передатчиком и приемником, км; R_0 — опорное расстояние (обычно $R_0 = 1$ м); C — скорость звука в морской среде, равная 1,5 км/с.

Для аппроксимации 1: $B_1 = 0$; $D_1 = 0.036 / \sqrt{f_0}$; для аппроксимации 8:

$$B_8 = 1.9 \times 10^{-3} f_B^{1.5}; D_8 = 0.036 / \sqrt{f_B}$$

где f_0, f_B — несущая частота и верхняя частота рабочего диапазона в килогерцах соответственно. Частотной характеристике (1) соответствует импульсная характеристика вида

$$h(t) = (2\sqrt{\pi a})^{-1}H(0)\exp[-(t-t_3)^2/(4a)],$$
(3)

где h(t) – импульсная характеристика, c^{-1} ; t – время, c; H(0) – безразмерный коэффициент из (2); a – коэффициент из (2), c^2 .

2. Сигнал и шум на входе приемника

В каждом интервале времени [kT,(k+1)T] передатчик производит один сигнал $S_{xk}(t-kT)$ из заданного множества сигналов $\{S_0(t),S_1(t)\}$, определенных на интервале [0,T]. Сигналы $S_0(t),S_1(t)$ имеют вид

$$S_0(t) = \Pi(t)\cos(\omega_0 t + \varphi_0), \quad S_1(t) = \Pi(t)\cos(\omega_1 t + \varphi_1), \tag{4}$$
 где $\Pi(t) = \mathbf{1}(t) - \mathbf{1}(t - T)$.

Какой именно из этих сигналов будет произведен, определяется символом x_k , поступающим на вход передатчика в течение интервала [kT,(k+1)T]. Если $x_k=0$, то вырабатывается сигнал $S_0(t-kT)$, а при $x_k=1$ производится сигнал $S_1(t-kT)$. Таким образом, сигнал на выходе передатчика будет иметь вид

$$S(t) = \sum_{k=0}^{N-1} S_{xk}(t - kT), \ 0 \le t \le T_{CB},$$
 (5)

где $T_{CB} = NT$ — длительность сеанса связи, N — число переданных символов.

Реакция C(t) ГАКС на этот сигнал может быть представлена в следующем виде

$$C(t) = \sum_{k=0}^{N-1} C_{xk} (t - kT), \qquad (6)$$

где

$$C_{xk}(t) = \int_{0}^{\infty} S_{xk}(\tau)h(t-\tau). \tag{7}$$

Как показывают расчеты, на дальностях не более 3 км, длительность T_h импульсной характеристики h(t) не превосходит 0,05 мс. При $T > T_h$ сигналы $C_{x(l-1)}(t-(l-1)T)$ и $C_{x(l+1)}(t-(l+1)T)$ практически не перекрываются во времени. Следовательно, при приеме сигнала $C_{xl}(t-lT)$ на интервале $[t_3+lT,t_3+(l+1)T]$ необходимо учитывать только один предшествующий $C_{x(l-1)}(t-(l-1)T)$ и один последующий $C_{x(l+1)}(t-(l+1)T)$ сигналы. Удобно далее положить $t_3=0$ и l=0. В этом случае на интервале приема [0,T] сигнал C(t) примет вид

$$C(t) = C_{x(l-1)}(t+T) + C_{xl}(t) + C_{x(l+1)}(t-T).$$
(8)

Полезный сигнал C(t) суммируется в морской среде с аддитивными помехами n(t). В качестве модели n(t) рассматривается белый гауссовский шум с односторонней спектральной плотностью мощности N_0 . Таким образом, сигнал на входе приемника имеет вид

$$Z(t) = C(t) + n(t). (9)$$

3. Определение вероятности ошибки приемника

Опорные сигналы приемника на интервале [0,T] имеют вид $\mu_0 S_0(t)$ и $\mu_1 S_1(t)$, где μ_0 , μ_1 – коэффициенты передачи морской среды для этих сигналов. Приемник, оптимальный по критерию максимального правдоподобия, принимает решение о том, что передан символ j, если выполняется неравенство [3]

$$X_j - P_j > X_r - P_r, \tag{10}$$

для всех $r \neq j$. В неравенстве (10)

$$X_{j} = \frac{2}{T} \int_{0}^{T} Z(t) \mu_{j} S_{j}(t) dt, \ P_{j} = \frac{1}{T} \int_{0}^{T} \mu_{j}^{2} S_{j}^{2}(t) dt,$$
 (11)

$$X_{r} = \frac{2}{T} \int_{0}^{T} Z(t) \mu_{r} S_{r}(t) dt, \ P_{r} = \frac{1}{T} \int_{0}^{T} \mu_{r}^{2} S_{r}^{2}(t) dt.$$
 (12)

Здесь $P_j,\ P_r$ — средние мощности сигналов $\mu_j S_j,\ \mu_r S_r$.

Предположим, что на интервале [0,T] передается символ j (сигнал $S_j(t)$). Тогда вероятность ошибки приемника представляет собой вероятность того, что неравенство (10) не выполняется. На работу приемника в интервале [0,T] будут влиять также сигналы от предшествующего и последующего символов.

Пусть на предшествующем интервале [-T,0] передавался символ i, а на последующем интервале [T,2T] символ k. В этом случае полезный сигнал C(t) на интервале [0,T] можно представить в виде

$$C_{ijk}(t) = C_i(t+T) + C_j(t) + C_k(t-T),$$
 (13)

где

$$C_{\nu}(t) = \int_{0}^{t} S_{\nu}(\tau)h(t-\tau)d\tau$$
 (14)

 ${\bf C}$ учетом аддитивных помех сигнал на входе приемника на интервале [0,T] принимает вид

$$Z(t) = C_{ijk}(t) + n(t).$$
 (15)

В результате проведенного анализа была получена следующая формула для вероятности ошибки

$$p_{out} = \sum_{j} \sum_{r \neq j} \sum_{i} \sum_{k} P(j)P(i)P(k)p(r/i,j,k), \qquad (16)$$

где P(j), P(i), P(k) – априорные вероятности символов j, i, k соответственно; p(r/i,j,k) – условная вероятность ошибочного приема символа j при последовательности переданных символов i,j,k.

Вероятность p(r/i,j,k) определяется по формуле

$$p(r/i, j, k) = \frac{1}{2} \left\{ 1 - erf \left[q_{jr}(i, j, k) \right] \right\}, \tag{17}$$

где $erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^2) dt$ — табулированная функция,

$$q_{jr}(i,j,k) = \gamma_{jr} h_{jr} \rho_{jr}(i,j,k); \ \gamma_{jr} = \frac{1}{2} \sqrt{\frac{P_{\Delta,jr}}{P_{C,jr}}}; \ h_{jr} = \sqrt{\frac{P_{C,jr}T}{N_0}};$$

$$P_{C,jr} = 0.5(P_r + P_j); P_{\Delta,jr} = P_j + P_r - 2\sqrt{P_j P_r} k_{jr};$$

$$k_{jr} = \frac{1}{\sqrt{E_{S_j} E_{S_r}}} \int_{0}^{T} S_j(t) S_r(t) dt \; ; \; E_{S_j} = \int_{0}^{T} S_j^2(t) dt \; ; \; \rho_{jr}(i,j,k) = \eta_{jr}(i,j,k) / P_{\Delta,jr};$$

$$\eta_{jr}(i,j,k) = \overline{X}_{j}(i,j,k) - \overline{X}_{r}(i,j,k) + P_{r} - P_{j}; P_{j} = \frac{1}{T} \int_{0}^{T} \mu^{2} S_{j}^{2}(t) dt;$$

$$\mu = H(0) \exp(-a \omega_0^2); \ \overline{X}_j(i,j,k) = \frac{2}{T} K_{S_j C_i}(-T) + \frac{2}{T} K_{S_j C_j}(0) + \frac{2}{T} K_{S_j C_k}(T);$$

 $E_j = \mu^2 E_{S_j}; \ K_{S_j C_v}(\tau)$ — функция взаимной корреляции сигналов $S_j(t)$ и $C_v(t);$ E_{S_j} — энергия сигнала $S_j(t); \ j \neq r$.

4. Вероятность ошибки приемника двоичных сигналов с амплитудной манипуляцией

Пусть $S_0(t) = 0$. В этом случае условные вероятности ошибки (17) можно привести к виду

$$p(1/0,0,0) = \frac{1}{2} \left\{ 1 - erf \left[q_{01}(0,0,0) \right] \right\}, \quad p(1/0,0,1) = \frac{1}{2} \left\{ 1 - erf \left[q_{01}(0,0,1) \right] \right\},$$

$$p(1/1,0,1) = \frac{1}{2} \left\{ 1 - erf \left[q_{01}(1,0,1) \right] \right\}, \quad p(0/0,1,0) = \frac{1}{2} \left\{ 1 - erf \left[q_{10}(0,1,0) \right] \right\},$$

$$p(0/0,1,1) = \frac{1}{2} \left\{ 1 - erf \left[q_{10}(0,1,1) \right] \right\}, \quad p(0/1,1,1) = \frac{1}{2} \left\{ 1 - erf \left[q_{10}(1,1,1) \right] \right\},$$

$$p(1/1,0,0) = p(1/0,0,1), \quad p(0/1,1,0) = p(0/0,1,1);$$

где

$$\begin{split} q_{10}(1,1,1) &= 0,5h_0 \left\{ 2 \Big[k_{S_1C_1}(0) + 2k_{S_1C_1}(T) \Big] - \sqrt{k_E} \right\}, \\ q_{10}(0,1,1) &= 0,5h_0 \left\{ 2 \Big[k_{S_1C_1}(0) + k_{S_1C_1}(T) \Big] - \sqrt{k_E} \right\}, \\ q_{10}(0,1,0) &= 0,5h_0 \Big[2k_{S_1C_1}(0) - \sqrt{k_E} \Big], \\ q_{10}(1,1,0) &= q_{10}(0,1,1), \ q_{01}(1,0,1) = 0,5h_0 \Big[\sqrt{k_E} - 4k_{S_1C_1}(T) \Big], \\ q_{01}(0,0,0) &= 0,5h_0 k_E, \\ q_{01}(0,0,1) &= 0,5h_0 \Big[\sqrt{k_E} - 2k_{S_1C_1}(T) \Big], \ q_{01}(1,0,0) &= q_{01}(0,0,1); \end{split}$$

 $h_0 = \sqrt{E_{C1}/N_0}$ — отношение сигнал/шум на входе приемника; E_{C_1} — энергия сигнала выходе морской среды из [4]; $E_1 = E_{S_1} H(0)^2 \exp(-2a\omega_0^2)$ — энергия сигнала на выходе морской среды при отсутствии искажений; $k_E = E_1/E_{C_1}$; $k_{S_1C1}(\tau) = K_{S_1C1}(\tau)/\sqrt{E_{S_1}E_{C1}}$; $E_{S_1} = 0,5T$ — энергия сигнала на входе морской среды; $K_{S_1C1}(\tau)$ — функция взаимной корреляции сигналов $S_1(t)$ и $C_1(t)$ из [5].

Согласно (16) вероятности ошибки при передаче символов 0 и 1 составят соответственно

$$p_{out}(0) = 0.25 [p(1/0,0,0) + 2p(1/0,0,1) + p(1/1,0,1)],$$
(18)

$$p_{out}(1) = 0.25 [p(0/0.1,0) + 2p(0/0.1,1) + p(0/1.1,1)].$$
(19)

Из предыдущих выражений следует, что $p_{out}(0) \neq p_{out}(1)$. Поэтому в данном случае (при учете межсимвольных искажений) дискретный канал связи оказывается несимметричным. Вероятность ошибки при приеме любого из двух равновероятных символов будет равна

$$p_{out} = 0.5 [p_{out}(0) + p_{out}(1)].$$
 (20)

При отсутствии искажений $k_{S_1C_1}(T) = k_{S_1C_1}(-T) = 0$, $k_E = 1$, поэтому из (18-20) находим

$$p_{ouu,u\partial} = p_{ouu}(0) = p(1/0) = p_{ouu}(1) = p(0/1) = 0,5[1 - erf(0,5h_0)].$$
 (21)

Для оценки относительного ухудшения помехоустойчивости приема за счет частотных искажений сигналов в морской среде удобно ввести логарифмическую меру

$$\delta_{AM} = 20\lg(p_{out}/p_{out,ud}). \tag{22}$$

Как следует из предыдущего анализа, величина \mathcal{S}_{AM} будет зависеть от отношения сигнал/шум h_0 , несущей частоты f_0 , длительности посылки сигнала T, начальной фазы φ_0 и дальности связи R. Графики зависимости $\mathcal{S}_{AM}(T)$ для некоторых значений f_0 , и $p_{ou,u\partial}=10^{-5}$ приведены на рис. 1, 2. Расчеты проводились для аппроксимации 8 при $f_B=80$ кГц для R=1,5; 3 км, $h_0=6,03$ и $\varphi_0=-0,5\pi$; 0. Значение $h_0=6,03$ соответствует $p_{ou,u\partial}=10^{-5}$.

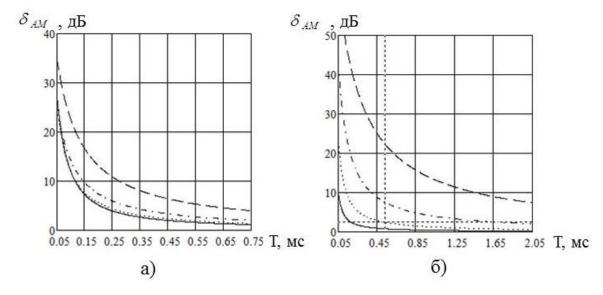


Рис. 1. Зависимость $\delta_{AM}(T)$ для R = 1,5 км

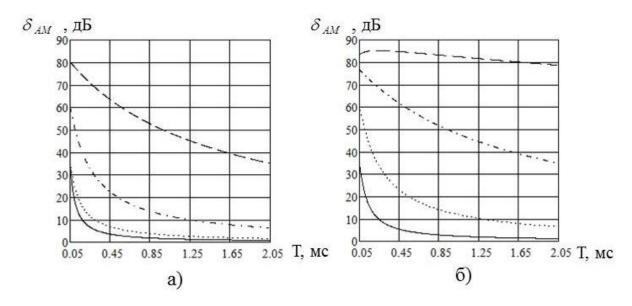


Рис. 2. Зависимость $\delta_{AM}(T)$ для R=3 км

На рис. 1 а, 2 а представлены зависимости при $\varphi_0=0$, а на рис. 1 б, 2 б — при $\varphi_0=-0,5\pi$. На рис. 1, 2 сплошной линией изображены зависимости для $f_0=30\,$ кГц; мелким пунктиром — для $f_0=40\,$ кГц, штрих пунктиром — для $f_0=50\,$ кГц, крупным пунктиром — для $f_0=60\,$ кГц. Как видно из рис. 1, 2 величина δ_{AM} уменьшается с ростом длительности T и увеличивается с ростом частоты f_0 . Можно показать, что δ_{AM} уменьшается с уменьшением отношения сигнал/шум h_0 . Если задаться $h_0=4,37$ ($p_{ouu,u\partial}=10^{-3}$), то при тех же значениях δ_{AM} и f_0 длительность T можно уменьшить в 2 раза. При $\varphi_0=-0,5\pi$ величина δ_{AM} в среднем значительно больше, чем при $\varphi_0=0$.

5. Вероятность ошибки приемника двоичных ортогональных сигналов с частотной манипуляцией

Пусть
$$S_0(t)=\Pi(t)\cos(\omega_0 t+\varphi_0),$$
 $S_1(t)=\Pi(t)\cos(\omega_1 t+\varphi_0)$, где
$$\omega_0=2\pi f_0=2\pi k_0/T\,,\;\omega_1=2\pi f_1=\pi k_1/T\,,\;k_0\,,\;k_1,$$
 – целые числа.

В этом случае согласно (16) вероятности ошибки при передаче символов 0 и 1 составят соответственно

$$p_{out}(0) = 0.25 [p(1/0,0,0) + p(1/0,0,1) + p(1/1,0,1) + p(1/1,0,0)],$$
(23)

$$p_{out}(1) = 0.25 [p(0/0,1,0) + p(0/0,1,1) + p(0/1,1,1) + p(0/1,1,0)],$$
(24)

где

$$p(r/i, j, k) = \frac{1}{2} \left\{ 1 - erf \left[q_{jr}(i, j, k) / \sqrt{2} \right] \right\}.$$
 (25)

Величины $q_{jr}(i,j,k)$ в (25) определяются по формулам

$$\begin{split} q_{01}(1,0,1) &= h_1 \Big[2k_{S_0C_1}(T) + mk_{S_0C_0}(0) - 2k_{S_1C_1}(T) - mk_{S_1C_0}(0) \Big], \\ q_{01}(0,0,1) &= h_1 [mk_{S_0C_0}(T) + mk_{S_0C_0}(0) + k_{S_0C_1}(T) - mk_{S_1C_0}(0) - \\ &- mk_{S_1C_0}(0) - k_{S_1C_1}(T) \Big], \\ q_{01}(0,0,0) &= mh_1 [k_{S_0C_0}(T) + k_{S_0C_0}(0) - 2k_{S_1C_0}(T) - k_{S_1C_0}(0)], \\ q_{01}(1,0,0) &= h_1 [k_{S_0C_1}(T) + mk_{S_0C_0}(0) + mk_{S_0C_0}(T) - k_{S_1C_1}(T) - \\ &- mk_{S_1C_0}(0) - mk_{S_1C_0}(T) \Big], \\ q_{10}(1,1,1) &= h_1 \Big[2k_{S_1C_1}(T) + k_{S_1C_1}(0) - k_{S_0C_1}(0) - 2k_{S_0C_1}(T) \Big], \\ q_{10}(0,1,1) &= h_1 [mk_{S_1C_0}(T) + k_{S_1C_1}(0) + k_{S_1C_1}(T) - mk_{S_0C_0}(T) - \\ &- k_{S_0C_1}(0) - k_{S_0C_1}(T) \Big], \\ q_{10}(0,1,1) &= h_1 [mk_{S_1C_0}(T) + k_{S_1C_1}(0) + k_{S_1C_1}(T) - mk_{S_0C_0}(T) - \\ &- k_{S_0C_1}(0) - k_{S_0C_1}(T) \Big], \\ q_{10}(0,1,0) &= h_1 [2mk_{S_1C_0}(T) + k_{S_1C_1}(0) + mk_{S_1C_0}(T) - 2mk_{S_0C_0}(T) \Big], \\ q_{10}(1,1,0) &= h_1 [k_{S_1C_1}(T) + k_{S_1C_1}(0) + mk_{S_1C_0}(T) - k_{S_0C_1}(T) - \\ &- k_{S_0C_1}(0) - mk_{S_0C_0}(T) \Big], \end{split}$$

где $h_1=h_0\sqrt{2/(1+m^2)}$, $h_0=\sqrt{E_{CP}/N_0}$ — отношение сигнал/шум на входе приемника; $E_{CP}=0.5(E_0+E_1)$, $m=\sqrt{E_0/E_1}$, E_0,E_1 — энергии сигналов $C_0(t),C_1(t)$ соответственно на частотах ω_0 и ω_1 , $k_{S_kC_l}(\tau),k,l=0,1$ — коэффициенты корреляции между сигналами $S_k(t)$ и $C_l(t)$ из [6].

Как показывает анализ, в данном случае $p_{out}(0) \neq p_{out}(1)$ и, следовательно, дискретный канал связи будет несимметричным. Средняя вероятность ошибки при приеме любого из двух равновероятных символов этом в этом случае определяется выражением (20).

Если пренебречь межсимвольными помехами, положив $k_{S_kC_l}(T) = 0$ можно получить следующие приближенные выражения для условных вероятностей ошибки

$$p_{out}(1) = \frac{1}{2} \left\{ 1 - erf \left[q_{10}(1, 1, 1) / \sqrt{2} \right] \right\}, \tag{26}$$

$$p_{out}(0) = \frac{1}{2} \left\{ 1 - erf \left[q_{01}(1,0,1) / \sqrt{2} \right] \right\}, \tag{27}$$

где
$$q_{10}(1,1,1) = h_1[k_{S_1C_1}(0) - k_{S_0C_1}(0)], \ q_{01}(1,0,1) = mh_1[k_{S_0C_0}(0) - k_{S_1C_0}(0)].$$

Если вообще пренебречь искажениями сигналов, но учесть только неравенство их энергий, то $p_{ou}(1)$ и $p_{ou}(0)$ можно определить по выражениям (26) и (27), в которых необходимо положить $q_{10}(1,1,1) = h_1$, $q_{01}(1,0,1) = mh_1$. Как показывает анализ и в последних двух случаях дискретный канал связи также является несимметричным.

Логарифмическая мера относительного ухудшения помехоустойчивости приемника сигналов ЧМ имеет вид

$$\delta_{YM} = 20\lg(p_{out}/p_{out,u\partial}), \tag{28}$$

где $p_{\mathit{out},\mathit{ud}}$ — вероятность ошибки в идеальном канале без искажений, определяемая по формуле

$$p_{out,u\partial} = \frac{1}{2} \left[1 - erf(h_0 / \sqrt{2}) \right].$$
 (29)

Графики зависимости $\delta_{V\!M}(T)$ для некоторых значений f_0 , и $f_B=80$ $p_{out,u\partial}=10^{-5}$ приведены на рис. 3, 4. Расчеты проводились для аппроксимации 8 при $f_B=80$ кГц для R=1,5; 3 км, $h_0=4,265$ и $\varphi_0=-0,5\pi;0$. Значение $h_0=4,265$ соответствует $p_{out,u\partial}=10^{-5},$ $f_1=f_0+0,5/T$.

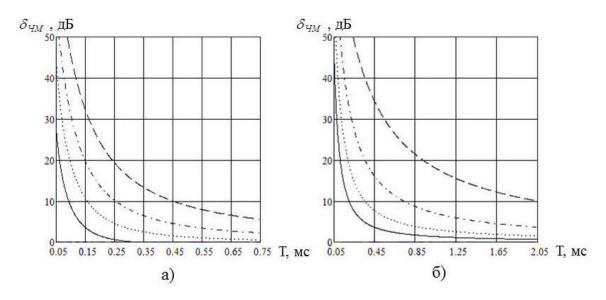


Рис. 3. Зависимость $\delta_{\mathit{YM}}(T)$ для R=1,5 км

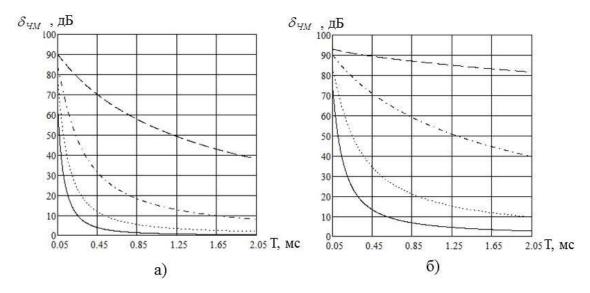


Рис. 4. Зависимость $\delta_{\mathit{YM}}(T)$ для R=3 км

На рис. 3a, 4a представлены зависимости при $\varphi_0=0$, a на рис. 3б, 4б – при $\varphi_0=-0.5\pi$. На рис. 3, 4 сплошной линией изображены зависимости для

 $f_0 = 30$ к Γ ц; мелким пунктиром — для $f_0 = 40$ к Γ ц, штрих пунктиром — для $f_0 = 50$ к Γ ц, крупным пунктиром — для $f_0 = 60$ к Γ ц.

Зависимости $\delta_{\mathit{ЧM}}(T)$ аналогичны зависимостям $\delta_{\mathit{AM}}(T)$ и отличаются от них только числовыми значениями. Для зависимости величины $\delta_{\mathit{ЧM}}$ от параметров сигнала справедливы те же выводы, что и для δ_{AM} .

6. Вероятность ошибки приемника двоичных сигналов с фазовой манипуляцией

Пусть $S_0(t) = \Pi(t)\cos(\omega_0 t + \varphi_0 + \pi), S_1(t) = \Pi(t)\cos(\omega_0 t + \varphi_0)$. В этом случае согласно (16) вероятности ошибки при передаче символов 0 и 1 составят соответственно

$$p_{out}(0) = 0.25[p(1/0,0,0) + 2p(1/0,0,1) + p(1/1,0,1)],$$
(30)

$$p_{out}(1) = 0.25[p(0/0.1,0) + 2p(0/0.1,1) + p(0/1.1,1)],$$
(31)

где

$$p(r/i, j, k) = \frac{1}{2} \left\{ 1 - erf \left[q_{jr}(i, j, k) \right] \right\}. \tag{32}$$

Величины $q_{jr}(i,j,k)$ в (32) определяются по формулам:

$$q_{10}(1,1,1) = h_0 \left[k_{s1c1}(0) + 2k_{s1c1}(T) \right], \ q_{10}(0,1,1) = h_0 k_{s1c1}(0),$$

$$q_{10}(0,1,0) = h_0 \left[k_{s1c1}(0) - 2k_{s1c1}(T) \right], \ q_{10}(1,1,0) = q_{10}(0,1,1),$$

$$q_{01}(1,0,1) = q_{10}(0,1,0), \ q_{01}(0,0,1) = q_{01}(1,0,0) = q_{10}(0,1,1),$$

$$q_{01}(0,0,0) = q_{10}(1,1,1),$$

 $h_0 = \sqrt{E_{C1} / N_0}$, E_{C1} – энергия сигнала на выходе морской среды из [4];

$$k_{s1c1}(0) = K_{s1c1}(0) / \sqrt{E_{S1}E_{C1}},$$
 (33)

$$k_{s1c1}(T) = K_{s1c1}(T) / \sqrt{E_{S1}E_{C1}},$$
 (34)

 $E_{S1}=0,5T$ — энергия сигнала на входе морской среды; $K_{s1c1}(\tau)$ — функция взаимной корреляции сигналов $S_1(t)$ и $C_1(t)$, из [6].

Логарифмическая мера относительного ухудшения помехоустойчивости приемника сигналов ФМ имеет вид

$$\delta_{\Phi M} = 20\lg(p_{out}/p_{out,uo}), \tag{35}$$

где $p_{\mathit{out},\mathit{ud}}$ — вероятность ошибки в идеальном канале без искажений, определяемая по формуле

$$p_{ou,u\partial} = \frac{1}{2} [1 - erf(h_0)]. \tag{36}$$

Расчет зависимости $\delta_{\phi M}$ от параметров f_0 , T, ϕ_0 R, h_0 при $2f_0T=n$, где n — целое число, $p_{ou,u\partial}=10^{-3}$ ($h_0=2,185$), $p_{ou,u\partial}=10^{-5}$ ($h_0=3,0155$) показал следующее. Значения $\delta_{\phi M}$ на низких частотах 20-30 кГц меньше, чем значения δ_{AM} . Но это отличие не превосходит 16%. На более высоких частотах (50-60 кГц) значения $\delta_{\phi M}$ больше, чем значения δ_{AM} . Но это отличие не превосходит 2%.

7. Определение значений параметров сигналов, относительно инвариантных к частотным искажениям в морской среде

Как следует из предыдущего, величины δ_{AM} , δ_{4M} , $\delta_{\Phi M}$ при заданных значениях дальности R и отношения сигнал/шум h_0 ($p_{out,u\partial}$) являются функциями параметров сигнала — несущей частоты f_0 , длительности посылки сигнала T и начальной фазы φ_0 . Если задаться допустимым значением относительного ухудшения помехоустойчивости $\delta_{\partial on}$, то для каждого вида манипуляции можно получить уравнения $\delta_{AM}(f_0,T) = \delta_{\partial on}$, $\delta_{YM}(f_0,T) = \delta_{\partial on}$, $\delta_{YM}(f_0,T) = \delta_{\partial on}$, $\delta_{YM}(f_0,T) = \delta_{\partial on}$. Эти уравнения определяют неявные функции одного параметра от другого. Так результаты расчета для фазовой и амплитудной манипуляции близки, то были рассчитаны зависимости $T(f_0)$ только для амплитудной и частотной манипуляций. Эти зависимости определяют максимальную несущую частоту и минимальную длительность

сигнала, для которых относительное ухудшение помехоустойчивости равно $\delta_{\partial on}=10$ дБ. Графики зависимостей $T(f_0)$ для $\varphi_0=0$ представлены на рис. 5.

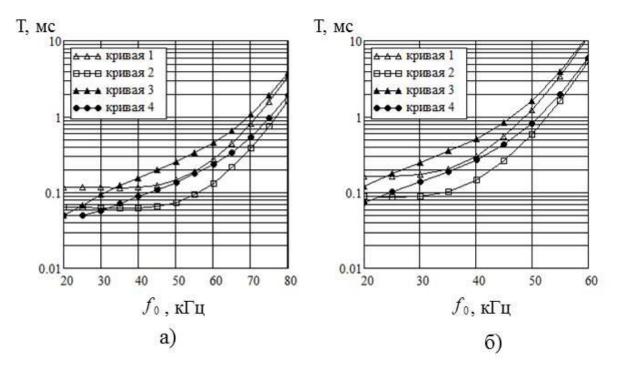


Рис. 5. Зависимости $T(f_0)$: a - R = 1,5 км; 6 - R = 3 км

На этом рисунке кривая 1 соответствует сигналу АМ для $h_0=6{,}03$ ($p_{out,u\partial}=10^{-5}$); кривая 2 — сигналу АМ для $h_0=4{,}37$ ($p_{out,u\partial}=10^{-3}$); кривая 3 — сигналу ЧМ для $h_0=4{,}265$ ($p_{out,u\partial}=10^{-5}$); кривая 4 — сигналу ЧМ для $h_0=3{,}09$ ($p_{out,u\partial}=10^{-3}$).

Каждая кривая $T(f_0)$ разбивает плоскость f_0 , T на 2 области: верхнюю и нижнюю. Точки, расположенные в верхней области, соответствуют допустимым значениям f_0 , T, при которых относительное ухудшение помехоустойчивости не превосходит $\delta_{\partial on}=10$ дБ. Сигналы с такими параметрами можно назвать сигналами, относительно инвариантными к частотным искажениям в морской среде. Точки, расположенные в нижней области, соответствуют недопустимым значениям f_0 , T. Общим свойством всех кривых рис. 5 при фиксированной частоте f_0 является уменьшение T приблизительно в 2 раза при переходе от $p_{out,u\partial}=10^{-5}$ к $p_{out,u\partial}=10^{-3}$. Приведем численные значения минимальной

длительности инвариантных сигналов для фиксированных частот f_0 . Пусть $p_{\mathit{out},u\partial} = 10^{-5}.$

Тогда для
$$R=1,5$$
 км, $f_0=30$ к Γ ц: $T_{AM(\Phi M)}=0,101$ мс; $T_{YM}=0,093$ мс.

Для
$$R=1.5$$
 км, $f_0=60$ кГц: $T_{AM(\Phi M)}=0.278$ мс; $T_{YM}=0.449$ мс.

Для
$$R=3$$
 км, $f_0=30$ кГц: $T_{AM(\Phi M)}=0{,}155$ мс; $T_{VM}=0{,}248$ мс.

Для
$$R = 3$$
 км, $f_0 = 60$ кГц: $T_{AM(\Phi M)} = 11,19$ мс, $T_{YM} = 11,95$ мс.

Заключение

Основной задачей данной работы была разработка методики выбора параметров сигналов цифровых гидроакустических систем связи, относительно инвариантных к частотным искажениям в морской среде. Для этой цели в работе определены вероятности ошибки когерентных приемников двоичных сигналов с амплитудной, частотной и фазовой манипуляцией с прямоугольной огибающей. В качестве приемников рассматривались когерентные приемники, оптимальные по критерию максимального правдоподобия при действии белого гауссовского шума и отсутствии искажений в морской среде. Введена логарифмическая мера относительного увеличения вероятности ошибки по сравнению со случаем отсутствия искажений. Определена функциональная зависимость этой меры от длительности посылки сигнала, несущей частоты и начальной фазы сигнала, а также от дальности связи и отношения сигнал/шум. На плоскости f_0 , T для каждого вида сигнала построена граница области, выше которой сигналы являются относительно инвариантными к частотным искажениям в морской среде. Для дальностей связи R = 1.5 км и 3 км и типичных несущих частот приведены минимальные значения длительности инвариантных сигналов.

Литература

- 1. Матвиенко В.Н., Тарасюк Ю.Ф. *Дальность действия гидроакустических средств*. Ленинград, Судостроение. 1983. 205 с.
- 2. Денисов В.Е. Аппроксимация амплитудно-частотной характеристики гидроакустического канала связи по совокупности показателей качества. 56-я Научно-техническая конференция МИРЭА. Москва, МИРЭА. 2007. Ч.2. С.71-76.
- 3. Финк Л.М. *Теория передачи дискретных сообщений*. Москва, Советское радио. 1970. 728 с.
- 4. Денисов В.Е. Анализ искажений высокочастотного импульса с прямоугольной огибающей в морской среде на основе энергетического критерия. 58-я Научно-техническая конференция МИРЭА. Москва, МИРЭА. 2009. Ч.2. С.48-54.
- 5. Денисов В.Е. Корреляция между входным выходным И сигналами гидроакустического канала связи при входном сигнале виде высокочастотного импульса cпрямоугольной огибающей. Международная научно-практическая конференция «Актуальные проблемы перспективы развития радиотехнических инфокоммуникационных систем» - РАДИОИНФОКОМ-2015». Москва, МИРЭА. 2015. Ч.1. С.98-103.
- 6. Денисов В.Е. Корреляция между двоичными сигналами ЧМ на входе и выходе гидроакустического канала связи. 3-я Международная научно-практическая конференция «Актуальные проблемы и перспективы развития радиотехнических и инфокоммуникационных систем» РАДИОИНФОКОМ-2017». Москва, МИРЭА. 2017. Ч.1. С.7-12.

Для цитирования:

Денисов В.Е. Помехоустойчивость когерентного приема двоичных сигналов с прямоугольной огибающей в гидроакустическом канале связи. *Журнал радиоэлектроники* [электронный журнал]. 2022. №8. https://doi.org/10.30898/1684-1719.2022.8.2