Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №8

Full text in Russian (pdf)

Russian page


DOI: https://doi.org/10.30898/1684-1719.2022.8.3





A.A. Pan’kov, P.V. Pisarev, S.R. Bayandin


Perm National Research Polytechnic University,
614990, Perm, Komsomolsky ave.,29


The paper was received June 7, 2022


Abstract. An electro-mechanical model has been developed for the functioning of a tactile polymer coating with a built-in fiber optic piezoelectroluminescent (PEL) sensor and many villi (vibrisses) on the surface of the coating along the sensor. Local deformation of the coating and the built-in sensor is carried out in the disturbance zones, witch are local areas of the coating (sensor) near the points of cantilever fastening of the tufts at their contacts with the analyzed object. Mechanoluminescent effect occurs on deformed sections of sensor when electric field of section of its piezoelectric layer affects adjacent section of electroluminescent layer. Modeling and analysis of substantially inhomogeneous deformation and electric fields occurring in piezoelectric and electroluminescent layers of the sensor were carried out and characteristic forms of generated informative light signals for different cases of deformation of bending villi in different planes and torsion as a result of contact of villi ends with the surface of the analyzed object were revealed.

Key words: tactile coating, villi, built-in fiber optic sensor, mechanoluminescent effect, piezoelasticity, numerical modeling.

Financing: The reported study was funded by RFBR and Perm Territory, project number 20-41-596010.

Corresponding author: Andrey Pankov, a_a_pankov@mail.ru


1. Wang X., Sun F., Yin G., Wang Y., Liu B., Dong M. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors. 2018. V.18. 2. P.1-16.

2. Lu K., Huang W., Guo J., et al. Ultra-sensitive strain sensor based on flexible poly(vinylidene fluoride) piezoelectric film. Nanoscale Research Letters. 2018. V.13, 83. P.1-6.

3. Koiva R., Zenker M., Schurmann C., Haschke R., Ritter H.J. A highly sensitive 3D-shaped tactile sensor. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, Australia. 9-12 July 2013. P.1084-1089.

4. Yousef H., Boukallel M., Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics – A review. Sensors and Actuators A: Physical. 2011. V.167. P.171-187.

5. Kappassov Z., Corrales J.-A., Perdereau V. Tactile sensing in dexterous robot hands – Review. Robotics and Autonomous Systems. 2015. V.74. P.195-220.

6. Oddo C.M., Beccai L., Felder M., Giovacchini F., Carrozza M.C. Artificial roughness encoding with a bio-inspired MEMS-based tactile sensor array. Sensors. 2009. V.9. 5. P.3161-3183.

7. Kolesar Jr E.S., Dyson C.S. Object imaging with a piezoelectric robotic tactile sensor. IEEE Journal of Micro-electromechanical Systems. 1995. V.4. 2. P.87-96.

8. Drimus A., Petersen M.B., Bilberg A. Object texture recognition by dynamic tactile sensing using active exploration. Proceedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication. Paris, France. 9-13 September 2012. P.277-283.

9. Zhang T., Liu H., Jiang L., Fan S., Yang J. Development of a flexible 3-D tactile sensor system for anthropomorphic artificial hand. IEEE Sensors Journal. 2013. V.13. P.510-518.

10. Lee H.-K., Chung J., Chang S.-I., Yoon E. Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. IEEE Journal of Micro-electromechanical Systems. 2008. V.17. 4. P.934-942.

11. Liang G., Wang Y., Mei D., Xi K., Chen Z. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for Three-Axis force measurement. IEEE Journal of Micro-electromechanical Systems. 2015. V.24. 5. P.1510-1519.

12. Iwasaki T., Takeshita T., Arinaga Y., Uemura K., Ando H., Takeuchi S., Furue M., Higurashi E., Sawada R. Shearing force measurement device with a built-in integrated micro displacement sensor. Sensors and Actuators A: Physical. 2015. V.221. P.1-8.

13.Lee H.-K., Chang S.-I., Yoon E. A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment. IEEE Journal of Micro-electromechanical Systems. 2006. V.15. 6. P.1681-1686.

14. Ramadan K., Sameoto D., Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures. 2014. V.23. 3. P.033001.

15. Seminara L., Pinna L., Valle M., Basiricò L., Loi A., Cosseddu P., Bonfiglio A., Ascia A., Biso M., Ansaldo A. Piezoelectric polymer transducer arrays for flexible tactile sensors. IEEE Sensors Journal. 2013. V.13. 10. P.4022-4029.

16. Hamdi O., Mighri F., Rodrigue D. Piezoelectric cellular polymer films: Fabrication, properties and applications (Review). AIMS Materials Science. 2018. V.5. 5. P.845-869.

17. Aleksandrova M. Spray deposition of piezoelectric polymer on plastic substrate for vibrational harvesting and force sensing applications. AIMS Materials Science. 2018. V.5. 6. P.1214-1222.

18. Rajala S., Tuukkanen S., Halttunen J. Characteristics of piezoelectric polymer film sensors with solution-processable graphene-based electrode materials. IEEE Sensors Journal. 2015. V.15. 6. P.3102-3109.

19. Dahiya R.S., Valle M., Lorenzelli L. SPICE model for lossy piezoelectric polymers. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2009. V.56. 6. P.387-395.

20. Yu P., Liu W., Gu C., Cheng X., Fu X. Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement. Sensors. 2016. V.16. 6. P.1-15.

21.     Zhang J., Zhou L.J., Zhang H.M., et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured grapheme. Nanoscale. 2018. V.10. 16. P.7387-7395.

22. Patent US 6399939. Sundaresan M.J., Ghoshal A., Schulz M.J. Sensor array system. Application Date: 13.06.2000. Publication Date: 04.06.2002.

23. Gauthier D., Mueller A., White R.D., et al. Micromachined lateral force sensors for characterization of microscale surface forces during chemical mechanical polishing. MRS Online Proceedings Library. 2008. V.1085: Symposium T - Nanoscale Tribology-Impact for Materials and Devices. 1085-T05-11.

24. Jia Y., Tian X., Wu Z., et al. Novel mechano-luminescent sensors based on piezoelectric/electroluminescent composites. Sensors. 2011. V.11. 4. P.1-9.

25. Patent RF №2630537. Pan'kov A.A. Volokonno-opticheskij datchik davleniya [Fiber optic pressure sensor]. Application Date: 06.09.2016. Publication Date: 11.09.2017 (In Russian).

26. Patent RF №2643692. Pan'kov A.A. Volokonno-opticheskij datchik ob’emnogo napryazhennogo sostoyaniya [Fiber optic volumetric voltage sensor]. Application Date: 04.04.2017. Publication Date: 05.02.2018 (In Russian).

27. Patent RF №2733093. Pan'kov A.A. Sposob izmereniya raspredelennyh parametrov fiziko-mekhanicheskih velichin [Method of measuring distributed parameters of physical and mechanical quantities]. Application Date: 14.01.2020. Publication Date: 29.09.2020 (In Russian).

28. Pan’kov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields. Sensors and Actuators A: Physical. 2019. V.288. P.171-176.

29. Patent RF №2698958. Pan'kov A.A. Sensornaya sistema [Sensor system]. Application Date: 21.12.2018. Publication Date: 02.09.2019 (In Russian).

30. Pan’kov A.A. Indicator polymer coating with built-in fiber optic piezosensor. IOP Conf. Series: Materials Science and Engineering. 2021. V.1029. P.012072. https://doi.org/10.30898/1684-1719.2022.8.2

31. Pan'kov A.A. Electrical-mechanical model of the indicator polymer fiber-optic PEL coating of mechanical effects. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2021. 7. https://doi.org/10.30898/1684-1719.2021.7.1 (In Russian).

32. Krauya U.E., YAnsons Y.L. Mechanoluminescence of composite materials: Methods, equipment and results of researches. Rig, Zinatne. 1990. 152 p.

33. Pan'kov A.A. Statisticheskaya mekhanika p'ezokompozitov [Statistical mechanics of piezocomposites]. Perm', Izd-vo Perm. gos. tekhn. un-ta. 2009. 480 p. (In Russian).

For citation:

Pan’kov A.A., Pisarev P.V., Bayandin S.R. Electro-mechanical model of tactile polymer fiber optic piezoelectroluminescent coating. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №8. https://doi.org/10.30898/1684-1719.2022.8.3 (In Russian)