Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №8
Contents

Full text (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.8.5  

 

 

SIGNAL INTEGRITY ANALYSIS

FOR THE FOUR-LAYER REFLECTION SYMMETRIC MODAL FILTER

 

Y.S. Zhechev

 

Tomsk State University of Control Systems and Radioelectronics,

634050, Russia, Tomsk, prospect Lenina, 40

 

The paper was received on June 6, 2022.

 

Abstract. The article presents the results of signal integrity analysis for a four-layer reflection symmetric modal filter and determines a potential field of application for such devices. The authors performed a simulation and experimental study in the range from 0 to 1.5 GHz. The results show that the average level of insertion loss in the passband does not exceed -18 dB, which demonstrates good agreement. The insertion loss does not significantly attenuate the useful signal. After the modal filter was defined in the frequency domain, the authors used the Advanced Design System to analyze the time characteristics. Pseudorandom binary sequences with bitrates from 0.125 to 0.5 Gb/s were excited to the input of the device in the Advanced Design System. The eye diagrams show that the modal filter has an excellent performance in terms of signal integrity. Thus, at the fastest data rate, the jitter does not exceed 39.5 ps. The maximum value of amplitude noise was 71 mV. It is possible to achieve significantly lower values of jitter and amplitude noise for the modal filter using its optimal geometric and electrical parameters. The results of the electrodynamic simulation are in good agreement with the experimental results.

Keywords: signal integrity, reflection symmetric modal filter, electromagnetic compatibility, pseudorandom binary sequence, eye diagram.

Financing: The reported study was funded by RFBR, project number 20-37-90098.

Corresponding author: Zhechev Yevgeniy Sergeevich, zhechev75@gmail.com

 

References

1. Zahid M.N., et al Signal Integrity Simulation Design and Analysis of Electronic Article Surveillance PCB for RFID applications. IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). 2020. P.600-604. https://doi.org/10.1109/IICSPI51290.2020.9332408

2. Lin H.-N. et al. Switching Noise Analysis for Conducted Electromagnetic Interference from of Power Electronic Module. Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). 2021. P.1-4. https://doi.org/10.1109/APEMC49932.2021.9596955

3. Shiue G.H., Shiu J.H., Chiu P.W. Analysis and Design of Crosstalk Noise Reduction for Coupled Striplines Inserted Guard Trace with an Open-Stub on Time-Domain in High-Speed Digital Circuits. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2011. V.1. №10. P.1573-1582. https://doi.org/10.1109/TCPMT.2011.2163309

4. Gazizov T.R., Zabolotsky A.M. Experimental Results on UWB Pulse Propagation in Low-Voltage Power Cables With Different Cross Sections. IEEE Transactions on electromagnetic compatibility. 2012. V.54. №1. P.229-231. https://doi.org/10.1109/TEMC.2011.2171971

5. Interstate standard GOST IEC/TR 61000-1-5-2017. Electromagnetic compatibility (EMC) – Part 1–5: High power electromagnetic (HPEM) effects on civil systems. 2017. 41 p.

6. Khazhibekov R.R., Zabolotsky A.M., Zhechev Y.S., Kosteletskii V.P., Gazizov T.R. Development of modal filter prototype for spacecraft busbar protection against ultrashort pulses. IOP Conference Series: Materials Science and Engineering. 2019. V.560. №1. P.12-145.

https://doi.org/10.1088/1757-899X/560/1/012145

7. Khazhibekov R.R., Zabolotsky A.M. Modal Filter with Interdigital Structure of Conductors for 100 Mbit/s Ethernet Equipment Protection. International Siberian Conference on Control and Communications (SIBCON). 2019. P.1-4. https://doi.org/10.1109/SIBCON.2019.8729577

8. Belousov A.O., Chernikova E.B., Khazhibekov R.R., Zabolotsky A.M. Quasi-static and electrodynamic simulation of reflection symmetric modal filter time response on ultra-short pulse excitation. Journal of Physics: Conference Series. 2018. V.1015. P.032015. https://doi.org/10.1088/1742-6596/1015/3/032015

9. Zhechev Y.S., Chernikova E.B., Belousov A.O. Research of the New Structure of Reflection Symmetric Modal Filter. 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). 2019. P.108-112. https://doi.org/10.1109/EDM.2019.8823227

10. Zhechev Y.S. Experimental Study of the Buried Vias Effect on Reflection Symmetric Modal Filter Performance. 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). 2020. P.200-204. https://doi.org/10.1109/EDM49804.2020.9153335

11. Svensson C., Dermer G.H. Time domain modeling of lossy interconnects. IEEE Transactions on Advanced Packaging. 2001. V.24. №2. P.191-196. https://doi.org/10.1109/6040.928754

12. Djordjevic A.R., Biljie R.M., Likar-Smiljanic V.D., Sarkar T.K. Wideband frequency-domain characterization of FR-4 and time-domain causality. IEEE Transactions on Electromagnetic Compatibility. 2001. V.43. №4. P.662-667. https://doi.org/10.1109/15.974647

13. Kim G., Kam D.G., Lee S.J., Kim J., Ha M., Koo K., Kim J. Modeling of Eye-Diagram Distortion and Data-Dependent Jitter in Meander Delay Lines on High-Speed Printed Circuit Boards (PCBs) Based on a Time-Domain Even-Mode and Odd-Mode Analysis. IEEE Transactions on Microwave Theory and Techniques. 2008. V.56. №8. P.1962-1972. https://doi.org/10.1109/TMTT.2008.927543

14. Sui C., Bai S., Zhu T., Cheng C., Beetner D.G. New methods to characterize deterministic jitter and crosstalk-induced jitter from measurements. IEEE Transactions on Electromagnetic Compatibility. 2015. V.57. №4. P.877-884. https://doi.org/10.1109/TEMC.2014.2388236

15. Kubíček M. In-system jitter measurement using FPGA. In 20th International Conference Radioelektronika. 2010. P.1-4. https://doi.org/10.1109/RADIOELEK.2010.5478560

16. Jung H. K., Lee S. M., Sim J. Y., Park H. J. A transmitter with different output timing to compensate for the crosstalk-induced jitter of coupled microstrip lines. In 2010 International SoC design conference. 2010. P.364-367. https://doi.org/10.1109/SOCDC.2010.5682896.

17. Lee J., Lee S., Nam S.A crosstalk reduction technique for microstrip MTL using mode velocity equalization. IEEE transactions on electromagnetic compatibility. 2011. V.53. №2. P.366-371. https://doi.org/10.1109/TEMC.2010.2095018

For citation:

Zhechev Y.S. Signal integrity analysis for the four-layer reflection symmetric modal filter. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2022. №8. https://doi.org/10.30898/1684-1719.2022.8.5