Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №8
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.8.2

 

 

 

 

 

MEASUREMENT OF PHASE AND AMPLITUDE NOISE OF SEMICONDUCTOR LASERS. MEASUREMENT TECHNIQUE. CALIBRATION. RESULTS

 

A.S. Luchinin, I.V. Malygin

 

UralFederalUniversity named after the first President of Russia B. N. Yeltsin,

Ekaterinburg, Russia.

 

The paper was received Apryl 24, 2023

 

Abstract. The application of the frequency detector method for measuring the phase noise spectrum of semiconductor lasers has been experimentally demonstrated. The frequency detector is based on an unbalanced Mach-Zehnder interferometer and a photodetector. Analytical relations are obtained that allow one to choose the parameters of the Mach-Zehnder interferometer and perform experimental calibration of the measuring system. A technique is proposed for measuring the spectral components of the phase noise of lasers in the presence of a slow drift of the delay in fiber-optic lines and the frequency of the laser under study. The results of measuring the phase noise of a low-noise DX-1 laser module and high-noise laser diodes LSDLD155 (DFB) and LSFLD155 (FP) are presented. A strong correlation between the amplitude and phase noise levels of these lasers is found. The decisive influence of the noise of LSDLD155 and LSFLD155 lasers on the level of phase noise of optoelectronic (OE) microwave generators built using them is shown. It has been suggested that the low-noise laser module DX-1, which has a phase noise level 20–60 dB lower (in different parts of the spectrum), is not decisive in the level of phase and amplitude noise of an optoelectronic microwave generator. The investigated OE generator was built during the research in this work. The generator has low phase noise: −120 dBc/Hz at a frequency detuning of 10 kHz. Oscillation frequency 6.8 GHz; fiber optic delay line length 200 m.

Keywords: laser; Mach-Zehnder interferometer; optoelectronic microwave oscillator; phase noise; amplitude noise; measurement technique; calibration.

Correspondingauthor: Malygin Ivan Vladimirovich, i.v.malygin@urfu.ru

 

References

1. PaschottaR. Noisein Laser Technology. Part 1: IntensityandPhaseNoise. Optik & Photonik. 2009. №2. P.48-50. https://doi.org/10.1002/opph.201190028

2. Llopis O., Bailly G., Bougaud A., Fernandez A. Experimental Investigations on Lasers FM and AM Noise. 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). 2020. Hal-02975526. https://doi.org/10.1109/IFCS-ISAF41089.2020.9234819

3. Zhalud V., Kuleshov V.N. Shumy v poluprovodnikovykh ustroistvakh [Noise in semiconductor devices]. Moscow, Sovetskoye Radio Publ. 1977. 416 p. (In Russian).

4. Leeson D.A Simple Model of Feedback Oscillator Noise Spectrum. IEEE Proceedings. 1966. V.54. №2. P.329-332. https://doi.org/10.1109/PROC.1966.4682

5. Abdallah Z. Microwave Sources Based on High Quality Factor Resonators: Modeling, Optimization and Metrology. Université Paul Sabatier. Date of access: 20.04.2023. https://theses.hal.science/tel-01445614v2/document

6. Bortsov A.A. The Laseropto-electronic oscillator with ultra-lower level of the spectral density power of phase noise. Nelineinyi mir. [Non-linear world]. 2011. V.9. №6. P.359-368 (InRussian).

7. Fomiryakov EH.A., Kharasov D.R., Nikitin S.P., Nanii O.E., Treshchikov V.N. Effect of laser phase noise on the sensitivity of coherent Rayleigh reflectometers with signal averaging. Foton-ehkspress. [Photon Express]. 2021. №6. P.252-253. https://doi.org/10.24412/2308-6920-2021-6-252-253 (In Russian).

8. Llopis O., Merrer P.H., Brahimi H., Saleh K., Lacroix P. Phase Noise Measurement of a Narrow Linewidth CW Laser Using Delay Lines Approaches. Optics Letters. 2011. №36(14). P.2713-2715. https://doi.org/10.1364/OL.36.002713

9. Zhou Q., Qin J., Xie W., Liu Z., Tong Y., Dong Y., Hu W. Dynamic Frequency-Noise Spectrum Measurement for a Frequency Swept DFB Laser with Short-Delayed Self-Heterodyne Method. Optics Express. 2015. V.23. №22. P.29245-29257. https://doi.org/10.1364/OE.23.029245.

10. Pnev A. B., Borisova A. V., Denisova Y. A., Stepanov K.V., Zhirnov A.A., Chernutskii A.O. Minimizing Measurement Error of Phase Noise of a Narrow-Band Laser Using a Fiber-Based Mach–Zehnder Interferometer with Polarization Maintenance. Measurement Techniques. 2018. Vol.61. 5. P.467-473. https://doi.org/10.1007/s11018-018-1453-y.

11. SkvortsovM.I., FomiryakovEH.A., TreshchikovV.N., NikitinS.P., Vol'fA.A., VlasovA.A., DostovalovA.V. Comparative Analysis of Methods for Measuring Spectral Widths of Distributed Feedback fiber lasers. Prikladnaya fotonika. [AppliedPhotonics]. 2020. V.7. №2. P.102-112 (InRussian).

12. Kireenkov A.YU. Fiber-optic interferometric methods for constructing measuring systems based on a surface-emitting laser. PhD thesis. ITMO University. 2017. 155 p. http://fppo.ifmo.ru/?pagel=16&page2=52&page_d=l&page_d2=145788 (In Russian)

13. LuchininA.S., MalyginI.V., ZhuravlevA.A., StrukV.K. Noise sources in optoelectronic microwave self-oscillators. SVCH-tekhnika i telekommunikatsionnye tekhnologii. [Microwave engineering and telecommunication technologies.] 2021. №3. P. 427-428. (InRussian).

14. Luchinin A.S., Malygin I.V. Investigation of noise sources in an optoelectronic microwave generator based on an optical delay line. Foton-ehkspress. [Photon Express]. 2021. №6(174). P.188-189. https://doi.org/10.24412/2308-6920-2021-6-188-189 (In Russian).

15. Dvait G.B. Tablitsy integralov i drugie matematicheskie formuly. [Tables of integrals and other mathematical formulas]. Moscow, Nauka Publ. 1973. 228 p. (In Russian).

16. Baskakov S.I. Radiotekhnicheskie tsepi i signaly: Uchebnik dlya vuzov dlya studentov radiotekhnicheskikh spetsial'nostei. Moscow, Vysshayashkola. 1988. 448 p. (In Russian).

17. Malakhov A.N. Fluktuatsii v avtokolebatel'nykh sistemakh [Fluctuations in self-oscillating systems]. Moscow, Nauka Publ. 1968. 660 p. (In Russian).

18. WallsF.L., Demarchi A. RFSpectrumofaSignal after Frequency Multiplication; Measurement and Comparison with a Simple Calculation. IEEE Transactions on Instrumentation and Measurement. 1975. V.24. №3. P.210-217. https://doi.org/10.1109/TIM.1975.4314411.

19. Sullivan D.B., Allan D.W., Howeand D.A., Wallsin F.L. Characterization of Clocks and Oscillators. NIST Technical Note 1337. National Institute of standards and Technology. U.S. Department of Commerce. Date of access: 20.04.2023. https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1337. pdf

20. Tran M.A., Huang D., Bowers J.E. Tutorial on Narrow Linewidth Tunable Semiconductor Lasers Using Si/III-V Heterogeneous Integration. APL Photonics. 2019. V.4. №11. P.1-19. https://doi.org/10.1063/1.5124254.

21. Chen Y., Blauvelt H. Laser Linewidth, Frequency Noise and Measurement. EMCORE Corporation. Date of access: 20.04.2023. https://emcore.com/wp-content/uploads/2021/04/EMCORE-Laser-Linewidth-Frequency-Noise-and-Measurement. pdf

22.  1550 nm NLW LASER EP1550-NLW-B-100. Eblana PhotonicsLtd. Date of access: 20.04.2023. https://eblana photonics. com/wp-content/uploads/2020/11/EP1550-NLW-B-100.pdf.

23. Cahill J.P., Zhou W., Menyuk C.R. Additive Phase Noise of Fiber-Optic Links Used in Photonic Microwave-Generation Systems. Applied Optics. 2017. V.56. №3. P.B18-B25. https://doi.org/10.1364/AO.56.000B18.

24. Volyanskiy K., Chembo Y.K., Larger L., Rubiola E. Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators. Journal of Lightwave Technology. 2010. V.28. №18. P.2730-2735. https://doi.org/10.1109/JLT.2010.2064230.

 

For citation:

Luchinin A.S., Malygin I.V. Measurement of Phase and Amplitude Noise of Semiconductor Lasers. Measurement technique. Calibration. Results. Zhurnal radioelertroniki [Journal of Radio Electronics] [online]. 2023. №8. https://doi.org/10.30898/1684-1719.2023.8.2 (In Russian)