Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.8.6
Regeneration of fiber Bragg Gratings
inscribed following the point-by-point method
with femtosecond laser radiation
D.V. Przhiialkovskii1, N.A. Plyuskova1,2, O.V. Butov1
1Kotelnikov IRE RAS 125009,
Russia, Moscow, Mokhovaya str., 11, b.72Moscow Institute of Physics and Technology (National Research University)
141701, Moscow region, Dolgoprudny, Institutsky per., 9
The paper was received August 15, 2024.
Abstract. The relevance of studies on the thermal stability of fiber Bragg gratings arises from the prospects of their applications in difficult operating conditions at elevated temperatures. One of the highest-temperature types of such structures formed in silica glass fibers are regenerated Bragg gratings. Generally, the regeneration effect is observed in gratings inscribed in molecular hydrogen-loaded fibers and/or in highly-doped germanosilicate fibers. This paper describes the first reported regeneration of gratings created via point-by-point inscription with femtosecond laser radiation in standard telecommunication fiber Corning SMF-28 without the presence of hydrogen in technological processes. The paper proposes an explanation of the possible mechanism for the formation of such regenerated structures.
Key words: fiber Bragg grating, femtosecond inscription, regeneration, isothermal annealing.
Financing: The work was carried out within Kotel’nikov IRE RAS state task.
Corresponding author: Przhiialkovskii Dmitrii Vladimirovich DVPRZ@yandex.ru
References
1. Fiber bragg gratings. / Kashyap R.: Academic press, 2009. ISBN: 978-0-12-372579-9 https://doi.org/10.1016/C2009-0-16830-7
2. Fiber Bragg grating sensors: recent advancements, industrial applications and market exploitation. / Cusano A., Cutolo A., Albert J.: Bentham Science Publishers, 2011. ISBN: 978-1-60805-084-0 https://doi.org/10.2174/97816080508401110101
3. Hill K. O., Fujii Y., Johnson D. C., Kawasaki B. S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication // Applied physics letters. ‒ 1978. ‒ T. 32, ¹ 10. ‒ C. 647-649. https://doi.org/10.1063/1.89881
4. Fiber optic sensors: fundamentals and applications. / Krohn D. A., MacDougall T., Mendez A.: Spie Press Bellingham, WA, 2014. https://doi.org/10.1117/3.1002910
5. Othonos A. Fiber bragg gratings // Review of scientific instruments. ‒ 1997. ‒ T. 68, ¹ 12. ‒ C. 4309-4341. https://doi.org/10.1063/1.1148392
6. Smirnov A. M., Bazakutsa A. P., Chamorovskiy Y. K., Nechepurenko I. A., Dorofeenko A. V., Butov O. V. Thermal switching of lasing regimes in heavily doped Er3+ fiber lasers // ACS Photonics. ‒ 2018. ‒ T. 5, ¹ 12. ‒ C. 5038-5046. https://doi.org/10.1021/acsphotonics.8b01298
7. Vasil'ev S. A., Medvedkov O. I., Korolev I. G. e., Bozhkov A. S., Kurkov A. S., Dianov E. M. Fibre gratings and their applications // Quantum electronics. ‒ 2005. ‒ T. 35, ¹ 12. ‒ C. 1085. https://doi.org/10.1070/QE2005v035n12ABEH013041
8. Lemaire P. J., Atkins R., Mizrahi V., Reed W. High pressure h/sub 2/loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in geo/sub 2/doped optical fibres // Electronics Letters. ‒ 1993. ‒ T. 13, ¹ 29. ‒ C. 1191-1193. https://doi.org/10.1049/el:19930796
9. Partovi A., Erdogan T., Mizrahi V., Lemaire P., Glass A., Fleming J. Volume holographic storage in hydrogen treated germano‐silicate glass // Applied physics letters. ‒ 1994. ‒ T. 64, ¹ 7. ‒ C. 821-823. https://doi.org/10.1063/1.111025
10. Lancry M., Niay P., Bailleux S., Douay M., Depecker C., Cordier P., Riant I. Thermal stability of the 248-nm-induced presensitization process in standard H 2-loaded germanosilicate fibers // Applied optics. ‒ 2002. ‒ T. 41, ¹ 34. ‒ C. 7197-7204. https://doi.org/10.1364/AO.41.007197
11. Leconte B. Contribution à l'étude de la photosensibilité des fibres en silice sous l'effet d'une insolation par un laser à ArF [Contribution to the study of the photosensitivity of silica fibers under the effect of insolation by an ArF laser]; Lille 1, 1998.
12. Patrick H., Gilbert S. L., Lidgard A., Gallagher M. Annealing of Bragg gratings in hydrogen‐loaded optical fiber // Journal of applied physics. ‒ 1995. ‒ T. 78, ¹ 5. ‒ C. 2940-2945. https://doi.org/10.1063/1.360753
13. Chanet N. et al. Design and integration of femtosecond Fiber Bragg gratings temperature probes inside actively cooled ITER-like plasma-facing components //Fusion Engineering and Design. – 2021. – Ò. 166. – Ñ. 112376. https://doi.org/10.1016/j.fusengdes.2021.112376
14. Polz L. et al. Regenerated Fibre Bragg Gratings: A critical assessment of more than 20 years of investigations //Optics & Laser Technology. – 2021. – Ò. 134. – Ñ. 106650. https://doi.org/10.1016/j.optlastec.2020.106650
15. Mihailov S. J. Femtosecond laser-induced Bragg gratings in silica-based fibers for harsh environment sensing //APL Photonics. – 2023. – Ò. 8. – ¹. 7. https://doi.org/10.1063/5.0142798
16. Dedyulin S. et al. Accurate measurements of a wavelength drift in high-temperature silica-fiber Bragg gratings //Metrology. – 2021. – Ò. 1. – ¹. 1. – Ñ. 1-16. https://doi.org/10.3390/metrology1010001
17. Deng Y., Jiang J. Optical fiber sensors in extreme temperature and radiation environments: A review //IEEE Sensors Journal. – 2022. – Ò. 22. – ¹. 14. – Ñ. 13811-13834. https://doi.org/10.1109/JSEN.2022.3181949
18. Grobnic D. et al. Fiber Bragg grating wavelength drift in long-term high temperature annealing //Sensors. – 2021. – Ò. 21. – ¹. 4. – Ñ. 1454. https://doi.org/10.3390/s21041454
19. Canning J. Fibre gratings and devices for sensors and lasers // Laser & Photonics Reviews. ‒ 2008. ‒ T. 2, ¹ 4. ‒ C. 275-289. https://doi.org/10.1002/lpor.200810010
20. Mihailov S. J. Fiber Bragg grating sensors for harsh environments // Sensors. ‒ 2012. ‒ T. 12, ¹ 2. ‒ C. 1898-1918. https://doi.org/10.3390/s120201898
21. Wang Q., Jewart C. M., Canning J., Grobnic D., Mihailov S. J., Chen K. P. High-temperature fiber Bragg grating sensors in microstructured fibers for harsh environment applications // Fiber Optic Sensors and Applications VII. ‒ T. 7677 ‒SPIE, 2010. ‒ C. 119-125. https://doi.org/10.1117/12.851778
22. Smelser C. W., Mihailov S. J., Grobnic D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask // Optics express. ‒ 2005. ‒ T. 13, ¹ 14. ‒ C. 5377-5386. https://doi.org/10.1364/OPEX.13.005377
23. Smelser C. W., Grobnic D., Mihailov S. J. High-Reflectivity Thermally Stable Ultrafast Induced Fiber Bragg Gratings in H2 -Loaded SMF-28 Fiber // IEEE Photonics Technology Letters. ‒ 2009. ‒ T. 21, ¹ 11. ‒ C. 682-684. https://doi.org/10.1109/LPT.2009.2016352
24. Li Y., Yang M., Wang D., Lu J., Sun T., Grattan K. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation // Optics express. ‒ 2009. ‒ T. 17, ¹ 22. ‒ C. 19785-19790. https://doi.org/10.1364/OE.17.019785
25. Canning J., Stevenson M., Bandyopadhyay S., Cook K. Extreme silica optical fibre gratings // Sensors. ‒ 2008. ‒ T. 8, ¹ 10. ‒ C. 6448-6452. https://doi.org/10.3390/s8106448
26. Mohd Nazal N., Lai M.-H., Lim K.-S., Gunawardena D. S., Chong W.-Y., Yang H.-Z., Ahmad H. Demarcation energy properties of regenerated fiber Bragg grating sensors in few-mode fibers // Optica Applicata. ‒ 2018. ‒ T. 48, ¹ 2. https://doi.org/10.5277/oa180209
27. Yang H. Z., Qiao X. G., Das S., Paul M. C. Thermal regenerated grating operation at temperatures up to 1400 C using new class of multimaterial glass-based photosensitive fiber // Optics letters. ‒ 2014. ‒ T. 39, ¹ 22. ‒ C. 6438-6441. https://doi.org/10.1364/OL.39.006438
28. Fokine M. Thermal stability of chemical composition gratings in fluorine–germanium-doped silica fibers // Optics Letters. ‒ 2002. ‒ T. 27, ¹ 12. ‒ C. 1016-1018. https://doi.org/10.1364/OL.27.001016
29. Fokine M. Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber // Optics letters. ‒ 2004. ‒ T. 29, ¹ 11. ‒ C. 1185-1187. https://doi.org/10.1364/OL.29.001185
30. Butov O. V., Golant K. M., Nikolin I. V. Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres //Electronics Letters. – 2002. – Ò. 38. – ¹. 11. – Ñ. 523-525. https://doi.org/10.1049/el:20020343
31. Butov O. V., Golant K. M. Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription //Proceedings of XX International Congress on Glass. – The Ceramic Society of Japan, Tokyo, Japan, 2004. https://doi.org/10.13140/2.1.1579.1040
32. Zhang B., Kahrizi M. High-temperature resistance fiber Bragg grating temperature sensor fabrication // IEEE sensors journal. ‒ 2007. ‒ T. 7, ¹ 4. ‒ C. 586-591. https://doi.org/10.1109/JSEN.2007.891941
33. Lindner E., Canning J., Chojetzki C., Brückner S., Becker M., Rothhardt M., Bartelt H. Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation // Optics communications. ‒ 2011. ‒ T. 284, ¹ 1. ‒ C. 183-185. https://doi.org/10.1016/j.optcom.2010.08.075
34. Lindner E., Chojetzki C., Brückner S., Becker M., Rothhardt M., Bartelt H. Thermal regeneration of fiber Bragg gratings in photosensitive fibers // Optics express. ‒ 2009. ‒ T. 17, ¹ 15. ‒ C. 12523-12531. https://doi.org/10.1364/OE.17.012523
35. Lindner E. et al. Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks //Sensors. – 2009. – Ò. 9. – ¹. 10. – Ñ. 8377-8381. https://doi.org/10.3390/s91008377
36. Bueno A. et al. Fast thermal regeneration of fiber Bragg gratings //Optics letters. – 2013. – Ò. 38. – ¹. 20. – Ñ. 4178-4181. https://doi.org/10.1364/OL.38.004178
37. Kumar J. et al. Studies on thermal regeneration and temperature stability of type-I FBGs written in Ge–B codoped and Ge doped fibers by a kHz repetition rate nanosecond 255 nm beam //Optics Communications. – 2014. – Ò. 320. – Ñ. 109-113. https://doi.org/10.1016/j.optcom.2014.01.049
38. Lancry M. et al. Investigation of structural glass relaxation in regenerated fiber Bragg gratings //Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. – Optica Publishing Group, 2016. – Ñ. JT4A. 27. https://doi.org/10.1364/ACOFT.2016.JT4A.27
39. Celikin M. et al. Enhanced stability of higher UV-densified Fiber Bragg Gratings after thermal regeneration //Optics Communications. – 2019. – Ò. 435. – Ñ. 345-349. https://doi.org/10.1016/j.optcom.2018.11.049
40. Lu L., Yang Y. The Formation Mechanism for Regenerated Fiber Bragg Grating Based on Non-uniform Crystallization //Optical Fiber Sensors. – Optica Publishing Group, 2023. – Ñ. W4. 56. https://doi.org/10.1364/OFS.2023.W4.56
41. Bandyopadhyay S., Canning J., Biswas P., Stevenson M., Dasgupta K. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing // Optics express. ‒ 2011. ‒ T. 19, ¹ 2. ‒ C. 1198-1206. https://doi.org/10.1364/OE.19.001198
42. Yang H. et al. Thermal regeneration in etched-core fiber Bragg grating //IEEE Sensors Journal. – 2013. – Ò. 13. – ¹. 7. – Ñ. 2581-2585. https://doi.org/10.1109/JSEN.2013.2256344
43. Przhiialkovskii D. V., Butov O. V. High-precision point-by-point fiber Bragg grating inscription // Results in Physics. ‒ 2021. ‒ T. 30. ‒ C. 104902. https://doi.org/10.1016/j.rinp.2021.104902
44. Przhiialkovskii D. V., Butov O. V. ÂÛÑÎÊÎÒÎ×ÍÀß ÇÀÏÈÑÜ ÂÎËÎÊÎÍÍÛÕ ÁÐÝÃÃÎÂÑÊÈÕ ÐÅØÅÒÎÊ ÏÎÒÎ×Å×ÍÛÌ ÌÅÒÎÄÎÌ [HIGH-PRECISION INSCRIPTION OF FIBER BRAGG GRATINGS BY THE DIRECT METHOD]//ÏÐÈÊËÀÄÍÀß ÔÎÒÎÍÈÊÀ APPLIED PHOTONICS. – 2022. – Ñ. 50. http://doi.org/10.15593/2411-4367/2021.3.05
45. Butov O. V. Bragg gratings inscription in weakly-doped fibers //Results in Physics. – 2019. – Ò. 15. – Ñ. 102542. https://doi.org/10.1016/j.rinp.2019.102542
46. Patrick H., Gilbert S. L., Lidgard A., Gallagher M. Annealing of Bragg gratings in hydrogen‐loaded optical fiber // Journal of applied physics. ‒ 1995. ‒ T. 78, ¹ 5. ‒ C. 2940-2945. https://doi.org/10.1063/1.360753
47. Kannan S., Guo J. Z., Lemaire P. J. Thermal stability analysis of UV-induced fiber Bragg gratings // Journal of lightwave technology. ‒ 1997. ‒ T. 15, ¹ 8. ‒ C. 1478-1483. https://doi.org/10.1109/50.618380
48. Dong L., Liu W. Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber // Applied optics. ‒ 1997. ‒ T. 36, ¹ 31. ‒ C. 8222-8226. https://doi.org/10.1364/AO.36.008222
49. Chisholm K., Sugden K., Bennion I. Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre // Journal of Physics D: Applied Physics. ‒ 1998. ‒ T. 31, ¹ 1. ‒ C. 61. https://doi.org/10.1088/0022-3727/31/1/009
50. Åslund M., Canning J. Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber // Optics Letters. ‒ 2000. ‒ T. 25, ¹ 10. ‒ C. 692-694. https://doi.org/10.1364/OL.25.000692
51. Razafimahatratra D., Niay P., Douay M., Poumellec B., Riant I. Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber // Applied Optics. ‒ 2000. ‒ T. 39, ¹ 12. ‒ C. 1924-1933. https://doi.org/10.1364/AO.39.001924
52. Wang Q., Hidayat A., Niay P., Douay M. Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm // Journal of Lightwave Technology. ‒ 2000. ‒ T. 18, ¹ 8. ‒ C. 1078-1083. https://doi.org/10.1109/50.857753
53. Fokine M. Formation of thermally stable chemical composition gratings in optical fibers // JOSA B. ‒ 2002. ‒ T. 19, ¹ 8. ‒ C. 1759-1765. https://doi.org/10.1364/JOSAB.19.001759
54. Erdogan T., Mizrahi V., Lemaire P., Monroe D. Decay of ultraviolet‐induced fiber Bragg gratings // Journal of applied physics. ‒ 1994. ‒ T. 76, ¹ 1. ‒ C. 73-80. https://doi.org/10.1063/1.357062
55. Vasil’ev S.A. et. al. Âîëîêîííûå ðåøåòêè ïîêàçàòåëÿ ïðåëîìëåíèÿ è èõ ïðèìåíåíèÿ [Refractive Index Fiber Gratings and Their Applications] // Êâàíòîâàÿ ýëåêòðîíèêà. ‒ 2005. ‒ T. 35, ¹ 12. ‒ C. 1085-1103. https://doi.org/10.1070/QE2005v035n12ABEH013041
56. Douay M. et al. Densification involved in the UV-based photosensitivity of silica glasses and optical fibers //Journal of Lightwave technology. – 1997. – Ò. 15. – ¹. 8. – Ñ. 1329-1342. https://doi.org/10.1109/50.618334
57. Tagantsev D.K. Ñòåêëîîáðàçíûå ìàòåðèàëû [Glassy materials]: ó÷åáíîå ïîñîáèå äëÿ âóçîâ ïî íàïðàâëåíèþ ïîäãîòîâêè ìàãèñòðîâ» Òåõíè÷åñêàÿ ôèçèêà». – 2010. ISBN 978-5-7422-3238-4
58. G. Tammann, Die Aggregatzustaende, Leopold Voss, Leipzig,1922
59. Lezzi P. J. et al. Surface crystallization and water diffusion of silica glass fibers: Causes of mechanical strength degradation //Journal of the American Ceramic Society. – 2015. – Ò. 98. – ¹. 8. – Ñ. 2411-2421. https://doi.org/10.1111/jace.13597
For citation:
Przhiialkovskii D.V., Plyuskova N.A., Butov O.V. Regeneration of fiber Bragg gratings inscribed following the point-by-point method with femtosecond laser radiation. // Journal of Radio Electronics. – 2024. – ¹. 8. https://doi.org/10.30898/1684-1719.2024.8.6 (In Russian)