

DOI: https://doi.org/10.30898/1684-1719.2024.8.9 УДК: 537.876.23

АНАЛИЗ ВОЗМОЖНОСТИ СОГЛАСОВАННОЙ СО СРЕДОЙ ЛОКАЛИЗАЦИИ ИСТОЧНИКА ИЗЛУЧЕНИЯ В УСЛОВИЯХ ДИФРАКЦИИ И МНОЖЕСТВЕННОГО ПЕРЕОТРАЖЕНИЯ

М.С. Лытаев

Санкт-Петербургский Федеральный исследовательский центр РАН 199178, Санкт-Петербург, 14 линия, дом 39

Статья поступила в редакцию 20 мая 2024 г.

Аннотация. Рассматривается задача определения расстояния до источника монохроматического излучения и его высоты в двумерном пространстве по данным измерений комплексной амплитуды сигнала. Пространство содержит произвольно расположенные тонкие вертикальные препятствия, что приводит к эффектам дифракции и множественного переотражения. Задача сформулирована при помощи метода сопряженных уравнений. Проанализированы две наиболее часто используемые разновидности метода согласованной со средой обработки: метод Бартлета и метод Кейпона. Проведены численные эксперименты для различных расположений препятствий и приёмников. Проанализирована устойчивость по отношению к расположению препятствий. Показано, что указанные методы можно успешно использовать для локализации источников излучения в условиях множественного переотражения при условии прямой видимости.

Ключевые слова: обратная задача, локализация источника, согласованная обработка, некорректная задача.

Финансирование: Исследование выполнено за счет гранта РНФ № 23-71-01069. Автор для переписки: Лытаев Михаил Сергеевич, mlytaev@yandex.ru

Введение

Поиск и местоопределение источников излучения по данным измерений относится к классу обратных задач [1]. С математической точки зрения, сложность заключается в их некорректности по Адамару [2]. Чаще всего это проявляется в том, что имеющихся измерений недостаточно для однозначного определения местоположения источника – возможных решений может быть несколько. Самым очевидным способом повышения точности является увеличение числа и пространственного покрытия измерений, однако это сопряжено с не менее очевидными практическими сложностями. Значительно снизить неопределенность, а значит и повысить точность локализации, позволяет учет информации о среде распространения сигнала. Этот подход требует знания этих самых параметров в каждом конкретном случае, а также сложных математических моделей, которые одновременно учитывают произвольные неоднородности среды и данные измерений сигнала.

Значительный прогресс в этой области был достигнут в вычислительной гидроакустике. С конца 80-х годов по настоящие время активно развивается метод согласованной со средой обработки (англ. matched field processing, MFP) [3, 4]. Как правило, метод согласованной со средой обработки применяется в волноводах мелкого и глубокого моря [5]. Учитывается пространственное распределение скорости звука и звуковые волноводы, а также профиль и физические свойства морского дна. Метод не накладывает ограничений на взаимное расположение приёмников, что позволяет использовать его для вертикально И горизонтально расположенных массивов гидрофонов. Существуют обобщения данного метода для локализации одновременно нескольких источников [6, 7]. Метод может использоваться для локализации движущихся источников [8]. Кроме того, данный метод успешно применяется в сейсмологии [9, 10] и радиолокации [11].

Целью данной работы является изучение возможности пассивной локализации в условиях существенного влияния дифракции и множественного переотражения. За основу была взята модельная среда с несколькими

вертикально расположенными тонкими препятствиями (экранами) [12, 13]. Эта модель, в иностранной литературе называемая knife-edge diifraction problem, часто используется в радиофизике для описания распространения волн в условиях сложного рельефа местности или городской застройки.

Работа организована следующим образом. В следующем разделе представлена математическая постановка задачи локализации точечного источника в среде с множеством вертикальных экранов. В разделе 2 предложена общая схема решения на базе метода сопряженных уравнений, а также показано, что существующие методы согласованной со средой локализации являются его следствием. В разделе 3 описана схема решения прямой задачи вычисления поля от известного источника, которая требуется для решения обратной. Анализ результатов численного моделирования проеден в разделе 4.

1. Постановка задачи

Волновой процесс описывается двумерным уравнением Гельмгольца, которое мы запишем в операторной форме

$$A\psi = q,$$

где

$$A\psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} + k^2 (1 + i\alpha) \psi,$$

 α — малый параметр, отвечающий за диссипацию волн, k — волновое число, q — точечный источник гармонических сигналов с неизвестной амплитудой Q и координатами (x_s, z_s) , которые требуется определить

$$q = Q\delta(x_s, z_s),$$

 $\psi(x,z)$ – пространственное распределение комплексной амплитуды поля

$$\psi: \Omega \to \mathbb{C},$$

определенное на полуплоскости

$$\Omega = \left\{ (x, z) \mid x \in (-\infty, +\infty), z \in [0, +\infty) \right\}.$$

На нижней границе установлено условие Дирихле

$$\psi(x,0) = 0$$

В пространстве имеется M тонких вертикальных непроницаемых экранов (англ. knife-edges). Они определяются расстоянием x_i^e и высотой H_i^e . Требуется, чтобы на границах препятствий также выполнялось условие Дирихле

$$\psi\left(x_{i}^{e},z\right)=0, z\in\left[0,H_{i}\right].$$

Задан набор N измерений $\{x_i^m, z_i^m, v_i\}, i = 1...N, (x_i, z_i)$ – координаты измерения, $v_i \in \mathbb{C}$ – комплексная амплитуда. Расположение неоднородностей также считается известным.

Схематичная постановка задачи показана на рис. 1.

Рис. 1. Схематичное описание поставленной задачи.

2. Метод согласованной со средой локализации

Для математически строгого вывода метода локализации будем использовать метод сопряженных уравнений [14], который часто используется при решении обратных задач различной природы [15].

2.1 Метод сопряженных уравнений

Введем в рассмотрение Гильбертово пространство со скалярным произведением

$$(f,g) = \int_{\Omega} f \bar{g}$$

и рассмотрим сопряженный оператор A^* , определяемый следующим образом

$$(Af,g) = (f,A^*g).$$
(1)

Допустим, у нас имеется измерительное устройство, которое фиксирует некоторую интегральную характеристику поля, т.е.

$$J_{p}(\psi) = \int_{\Omega} \psi \overline{p} = (\psi, p)$$

В простейшем случае $p = \delta(x_m, z_m)$, что соответствует измерению поля точечным приемником в некоторой точке (x_m, z_m) .

Рассмотрим следующее сопряженное уравнение

$$A^*\varphi_p^*=p,$$

и подставим его в определение (1)

$$\left(A\psi,\varphi_{p}^{*}\right)=\left(\psi,A^{*}\varphi_{p}^{*}\right)$$

ИЛИ

$$Q\overline{\varphi_p^*}(x^s, z^s) = (q, \varphi_p^*) = (\psi, p) = J_p(\psi).$$

Решая данное уравнение относительно (x_s, z_s) , можно оценить местоположение исходного источника. В частности, для точечного приёмника уравнение будет иметь следующий вид

$$J_{p}(\psi) = \psi(x_{i}^{m}, z_{i}^{m}) = v_{i} = Q\overline{\varphi_{p}^{*}}(x^{s}, z^{s}).$$

Само собой, для одного приемника такое уравнение может иметь далеко не единственное решение. Кроме того, амплитуда источника Q тоже обычно не известна. Так что, для более надежного определения положения источника требуется сразу несколько пространственно разнесенных точечных приёмников. Кроме того, в реальной ситуации в значениях измерений содержатся шумы и погрешности.

Главное отличие различных методов согласованной со средой локализации заключается в способе сравнения и сопоставления значения сопряженного поля и измерений. Далее рассмотрим два наиболее часто используемых: метод Бартлета и метод Кейпона [3].

2.2 Метод Бартлета

Сначала рассмотрим самый простой и базовый метод. Составим из измерений и соответствующих им решений сопряженных уравнений следующие вектора

$$\boldsymbol{v} = \begin{pmatrix} v_1 & v_2 & \dots & v_N \end{pmatrix}^T,$$

$$\boldsymbol{g}(x,z) = \begin{pmatrix} \varphi^*_{\delta(x_1,z_1)}(x,z) & \varphi^*_{\delta(x_2,z_2)}(x,z) & \dots & \varphi^*_{\delta(x_N,z_N)}(x,z) \end{pmatrix}^H.$$

Задача формализуется как минимизация квадратов отклонений

$$\arg\min_{(x,z)\in\Omega}\min_{Q\in C} \left\| \boldsymbol{\nu} - \boldsymbol{Q}\boldsymbol{g} \right\|^2.$$
(2)

Задача минимизации по *Q* может быть легко решена аналитически [16]. Тогда задача (2) перезаписывается следующим образом

$$\arg\max_{(x,z)\in\Omega} \frac{\left|\boldsymbol{v}^{H}\boldsymbol{g}(x,z)\right|^{2}}{\left\|\boldsymbol{g}(x,z)\right\|^{2}}.$$
(3)

В такой постановке задача максимизации решается простым переборам по всем возможным вариантам. Сложность ее решения составляет $O(n_x n_z N)$, где n_x и n_z – соответственно размер расчетной сетки по x и z. При необходимости можно использовать различные методы оптимизации или снижения размерности для ускорения этой процедуры [16].

Перезапишем для удобства (3) следующим образом

$$\arg\max_{(x,z)\in\mathbf{\Omega}}B_{Bart}(x,z),$$

где целевая функция $B_{Bart}(x,z)$ определяется следующим образом

$$B_{Bart}(x,z) = \frac{\left| \boldsymbol{v}^{H} \boldsymbol{g}(x,z) \right|^{2}}{\left\| \boldsymbol{g}(x,z) \right\|^{2}} = \left| \boldsymbol{v}^{H} \boldsymbol{w}(x,z) \right|^{2} = \boldsymbol{w}^{H}(x,z) \boldsymbol{K} \boldsymbol{w}(x,z),$$
$$\boldsymbol{w}(x,z) = \frac{\boldsymbol{g}(x,z)}{\left\| \boldsymbol{g}(x,z) \right\|},$$
$$\boldsymbol{K} = \boldsymbol{v} \boldsymbol{v}^{H}.$$

2.3 Метод Кейпона

Основная идея данного метода – уменьшить неоднозначность при поиске максимума функции B(x,z) [17].

Рассмотрим *B* как функцию от вектора значений поля на приёмниках (v) и пространственных координат. Поставим задачу нахождения такой функции *B*, которая бы была равна единице, если v соответствует отклику на точечный источник в точке (x, z)

$$B(\boldsymbol{g}(x,z),x,z)=1,$$

а во всех остальных точках была бы минимальной

$$B(v, x, z) \rightarrow min.$$

Если искать функцию в виде

$$B_{Cap}(v,x,z) = \left| v^H \boldsymbol{u}(x,z) \right|^2,$$

где *и* – некоторый вектор, то результатом является следующая функция

$$B_{Cap}(x,z) = \left[w^{H}(x,z) K^{-1} w(x,z) \right]^{-1},$$

для которой также следует найти максимум для определения местоположения источника.

3. Дифракция на массиве из тонких экранов

Как мы увидели в предыдущем разделе, в основе решения обратной задачи лежит решение прямой задачи. Т.е. чтобы определить источник излучения по измерению поля, требуется метод расчета значения поля для произвольного источника в произвольной точке пространства.

Для простоты и не ограничивая общности считаем, что точечный источник находится в точке с координатами $(0, z_m)$. Тогда, следуя работе [13], решение может быть записано следующим образом

$$\psi(x,z) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \tilde{\psi}(x,p) \sin(pz) dz,$$

$$\begin{split} \tilde{\psi}(x,p) &= -\frac{k^2}{\sqrt{2\pi}} \sum_{j=1}^M \tilde{G}(x,x_j,p) \varphi_j(p) + \sqrt{\frac{2}{\pi}} \sin(z_m p) \tilde{G}(x,0,p), \\ \tilde{G}(x,x',p) &= -\frac{1}{2\gamma(p)} e^{-\gamma(p)|x-x'|}, \\ \gamma(p) &= \sqrt{k^2 - p^2 + ik^2\alpha}. \end{split}$$

Функции $\varphi_j(p)$ удовлетворяют следующей системе интегральных уравнений

$$\begin{cases} \varphi_{1}(p) + \sum_{j=1}^{M} \int_{-\infty}^{+\infty} K_{1,j}(p,p') \varphi_{j}(p') dp' = g_{1}(p) \\ \varphi_{2}(p) + \sum_{j=1-\infty}^{M} \int_{-\infty}^{+\infty} K_{2,j}(p,p') \varphi_{j}(p') dp' = g_{2}(p) \\ \dots \\ \varphi_{M}(p) + \sum_{j=1-\infty}^{M} \int_{-\infty}^{+\infty} K_{M,j}(p,p') \varphi_{j}(p') dp' = g_{M}(p) \end{cases}$$
(4)

с ядром

$$K_{i.j}(p,p') \approx -\frac{bhk^2}{2\pi} \frac{\sin\left((p-p')H_i^e\right)}{(p-p')\gamma(p')} e^{-\gamma(p')|x_i^e-x_j^e|},$$

и правой частью

$$g_i(p) \approx -bh \frac{2}{\pi} \int_{-\infty}^{+\infty} \frac{\sin((p-p')H_i^e)}{2(p-p')\gamma(p')} \sin(z_m p') e^{-\gamma(p')x_i^e} dp'.$$

b и h – параметры, отвечающие за проницаемость и толщину препятствий. Далее считаем, что bh = 400. Выбор этого значения обеспечивает требуемой уровень непроницаемости и позволяет считать препятствие пренебрежимо тонким. Отметим, что данная модель не позволяет устремить b и hсоответственно к бесконечности и нулю, так же как в природе не существует бесконечно непроницаемых или бесконечно тонких препятствий.

В работе [13] показано, что численное решение системы (4) является наиболее эффективным для поставленной задачи среди существующих

численных методов. Строгое обоснование корректности такого подхода и вывод системы уравнений (4) приведены в работах [18, 19]. Фактически, существенно двумерная задача сводится к одномерной. Наиболее близкой альтернативой был бы метод двунаправленного параболического уравнения [20, 21]. Он может учитывать не только тонкие экраны, но и другие препятствия произвольного вида. Однако существуют проблемы с его теоретическим обоснованием и скоростью сходимости [13]. Методы общего назначения, такие как метод конечных элементов, требуют слишком больших вычислительных мощностей даже для очень маленьких областей интегрирования. Лучевые методы не могут корректно учитывать эффекты дифракции и множественного переотражения, что является существенным в данной задаче.

4. Анализ результатов численных экспериментов

В данном разделе приводятся результаты численного моделирования для различных расположений препятствий и приёмников. Источник во всех примерах расположен в точке (0,50) и излучает сигнал на частоте 300 МГц (что соответствует длине волны 1 м). Моделирование для каждого примера состоит из следующих шагов:

- Рассчитывается двумерное распределение поля (ψ) от источника, используя метод из предыдущего раздела. Оно показано на левом рисунке в каждом из примеров.
- 2) Выбирается множество *N* пространственных точек (x_i^m, z_i^m) , которые соответствуют расположению приёмников. Значения поля в этих точках используются как измерения $(\psi(x_i^m, z_i^m) = v_i)$, из которых формируется вектор *v*.
- 3) Рассчитывается N двумерных полей $\varphi^*_{\delta(x_i,z_i)}(x,z)$, используя метод из предыдущего раздела и формируется векторозначная функцию g(x,z).

- 4) Используем g(x, z) и v для вычисления целевой функции методов
 Бартлета и Кейпона. Их двумерное распределение показано соответственно на центральном и правом рисунках.
- 5) Ищем точку, в которой целевая функция принимает максимальное значение она и будет расположением источника.

Во всех примерах ниже белыми звездочками обозначается позиция источника, черными – позиции приёмников.

Моделирование производилось при помощи разработанной автором программной библиотеки PyWaveProp [22].

4.1 Источник перед экраном

Расположим экран высотой 70 м на расстоянии 200 м за источником. Вертикальный массив приёмников расположен на расстоянии 1500 м от источника. *M* = 25 приёмников равномерно расположены на высотах 10-60 м с шагом 2 метра. Результаты моделирования показаны на рис. 2. Видно, что переотражение от препятствия не помешало определить источник. Оба метода практически безошибочно определили положение источника. Целевая функция метода Кейпона практически исключает неопределенность в определении источника – максимум можно увидеть только при помощи зума. Целевая функция метода Бартлета выглядит менее определенной. Тем не менее, максимум точно совпадает с расположением исходного источника.

Рис. 2. Источник перед экраном. Локализация источника при помощи вертикального массива приёмников. Метод Бартлета: (0, 50); метод Кейпона: (-1, 49.7).

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №8, 2024</u>

Далее расположим приёмники горизонтально: 25 точечных приёмников равномерно расположены на высоте 10 м и расстояниях 1000-1250 м. Распределение целевых функций для двух методов показано на рис. 3. Видно, что максимум функции $B_{Bart}(x,z)$ стал еще менее различим и рассчитанная позиция источника оказалась на 15 м дальше истинного расположения. Метод Кейпона, как и ранее, дает идеальное разрешение и ошибку всего в 1 м.

Рис. 3. Источник перед экраном. Локализация источника при помощи горизонтального массива приёмников. Метод Бартлета: (-15, 50.2); метод Кейпона: (1, 50.3).

Любая модель окружающей среды описывает реальную среду лишь с некоторой погрешностью. При этом, метод локализации должен быть устойчив к этой погрешности. В этой связи, целесообразно оценить влияние погрешности в расположении препятствий на точность локализации. Для этого будем вводить искусственную ошибку в расположение препятствий (расстояние и высоту), используемых при решении обратной задачи. Таким образом среда, для которой вычисляются реплики измерений v, и среда, для которой решается обратная задача, несколько различаются. В таблицах 1 и 2 показаны результаты такого моделирования. Видно, что оба метода оказались устойчивы к небольшим (до 5 длин волн) погрешностям в расстоянии до препятствия. Погрешность в высоте препятствия оказала большее влияние на точность локализации. Метод Кейпона оказался неустойчивым к погрешности в 2 длины волны, а метод

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №8, 2024

Бартлета оказался устойчивым только в случае вертикального массива приёмников.

Таблица 1. Источник перед экраном. Влияние погрешности расстояния до препятствия на точность локализации.

Истинное	Расстояние, м	Вертикальный массив		Горизонтальный массив	
расстояние, м		Бартлет	Кейпон	Бартлет	Кейпон
-200	-195	(5, 49.8)	(-1, 50.2)	(-4, 50.0)	(5, 50.0)
	-199	(1, 50.0)	(1, 50.0)	(8, 50.0)	(1, 50.2)
	-200	(0, 50)	(-1, 49.7)	(-15, 50.2)	(1, 50.3)
	-201	(-1, 50.0)	(-1, 50.2)	(-10, 50.2)	(-1, 50.3)
	-205	(-5, 50.2)	(1, 49.7)	(2, 50.2)	(-4, 50.6)

Таблица 2. Источник перед экраном. Влияние погрешности высоты препятствия на точность локализации.

Истинная	Высота, м	Вертикальный массив		Горизонтальный массив	
высота, м		Бартлет	Кейпон	Бартлет	Кейпон
-70	68	(5, 50.0)	(-16, 47.6)	(-2, 50.1)	(-24, 52.1)
	70	(0, 50)	(-1, 49.7)	(-15, 50.2)	(1, 50.3)
	72	(1, 50.0)	(-51, 43.2)	(-191, 50.3)	(-36, 51.6)

4.2 Источник за экраном

Передвинем экран таким образом, чтобы он оказался между источником и массивом приемников. Теперь прямая видимость между ними отсутствует. Как видно из рис. 4, метод Бартлета дает еще большую неопределенность в зоне за препятствием. Тем не менее, он позволил верно определить расположение источника. Метод Кейпона, несмотря на отсутствие неопределенности, обнаружил положение источника неправильно. Оба метода в данном случае оказались сильно восприимчивы к погрешности входных данных. Как видно из таблиц 3 и 4, метод Бартлета сохраняет устойчивость в определении координат источника, если погрешность в положении препятствия не превосходит длину волны. В случае горизонтально расположенного массива приёмников, который показан на рис. 5, ни один из методов не смог корректно определить положение источника даже без учета погрешностей.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №8, 2024</u>

Рис. 4. Источник за экраном. Локализация источника при помощи вертикального массива приёмников. Метод Бартлета: (0, 50); метод Кейпона: (-109, 39.6).

Рис. 5. Источник за экраном. Локализация источника при помощи горизонтального массива приёмников. Метод Бартлета: (-245, 33.8); метод Кейпона: (-127, 47.1).

Таблица 3. Источник за экраном. Влияние погрешности расстояния до препятствия на точность локализации.

Истинное	Расстоящие	Вертикальный массив		Горизонтальный массив	
расстояние, м	расстояние, М	Бартлет	Кейпон	Бартлет	Кейпон
200	195	(-128, 34.8)	(30, 52.4)	(152, 68.6)	(-12, 32.7)
	199	(-7, 49.7)	(-190, 32.3)	(30, 52.2)	(112, 62.8)
	200	(0, 50.0)	(-109, 39.6)	(-245, 33.8)	(-127, 47.1)
	201	(1, 49.8)	(-240, 16.7)	(-238, 49.2)	(-145, 47.0)
	205	(-61, 29.7)	(-190, 17.4)	(-134, 37.8)	(-63, 54.6)

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №8, 2024

Истинная	Высота, м	Вертикальный массив		Горизонтальный массив	
высота, м		Бартлет	Кейпон	Бартлет	Кейпон
-70	68	(203, 66.3)	(171, 71.9)	(152, 74.3)	(175, 73.3)
	70	(0, 50.0)	(-109, 39.6)	(-245, 33.8)	(-127, 47.1)
	72	(200, 67.8)	(11, 127.0)	(-166, 26.0)	(195, 27.6)

Таблица 4. Источник за экраном. Влияние погрешности высоты препятствия на точность локализации.

4.3 Источник между экранов

Теперь рассмотрим случай, когда источник и приёмник расположены между двумя экранами. Помимо дифракции, в этом примере существенно проявляются эффекты множественного переотражения между препятствиями. Результаты моделирования показаны на рис. 6. Видно, что эффекты множественного переотражения не препятствуют локализации источника – оба метода корректно определили его положение.

Рис. 6. Источник между двумя экранами. Локализация источника при помощи вертикального массива приёмников. Метод Бартлета: (0, 50); метод Кейпона: (1, 50.1).

Расположим между источником и вертикальным массивом приёмников еще один экран, закрывающий часть приёмников от прямой видимости. Соответствующие результаты показаны на рис. 7. Примечательно, что за вторым препятствием образуется зона тени даже в той области, где имеется прямая геометрическая видимость источника. Этот пример хорошо демонстрирует, насколько нетривиальным и неочевидным может быть распространение волн в

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №8, 2024

условиях дифракции и множественного переотражения. Метод Бартлета корректно определил положение источника, несмотря на существенную неопределенность его целевой функции. Метод Кейпона в данном случае не справился с поставленной задачей.

Рис. 7. Локализация источника между несколькими экранами. Метод Бартлета: (0, 50); метод Кейпона: (-195, 101.1).

Заключение

Оба рассмотренных метода показали хорошие результаты в случае, когда между источником и приёмником имеется прямая видимость. При этом метод Бартлета оказался более устойчив к погрешностям входных данных. Когда приёмники оказываются в зоне тени по отношению к источнику, с задачей справился только метод Бартлета. И то лишь в случае отсутствия погрешностей. Таким образом, очевидна необходимость создания новых методов, способных лучше определять положения источника из зоны дифракционной тени.

Невозможно уместить все многообразие возможных вариантов и конфигураций в одной работе, но разработанная автором программная библиотека PyWaveProp [22] позволяет исследователям самостоятельно проводить вычислительные эксперименты, подобные приведенным выше.

Главный результат работы состоит в демонстрации возможности высокоточного местоопределения источника излучения одновременно в условиях интерференции, дифракции и множественного переотражения. Именно

эти эффекты встречаются при распространении сигналов в условиях плотной городской застройки, или в сложных подводных условиях.

В данной работе были проанализированы только базовые модельные сценарии. Рассмотренная в данной работе задача для монохроматического источника легко обобщается на случай широкополосных источников. В дальнейшем планируется рассмотреть более реалистичную задачу с учетом шумов и при наличии нескольких источников. Кроме того, планируется использовать метод двунаправленного параболического уравнения для поиска источников среди вертикальных неоднородностей произвольной формы. Также актуальной видится задача определения оптимального расположения и количества приёмников в зависимости от среды.

Финансирование: Исследование выполнено за счет гранта РНФ № 23-71-01069.

Литература

- Colton D. L., Kress R., Kress R. Inverse acoustic and electromagnetic scattering theory. – Berlin : Springer, 1998.
- Тихонов А.Н. и др. Численные методы решения некорректных задач. – М.: Наука, 1990.
- Baggeroer A. B., Kuperman W. A., Mikhalevsky P. N. An overview of matched field methods in ocean acoustics // IEEE Journal of Oceanic Engineering. – 1993.
 T. 18. – №. 4. – C. 401-424.
- Сазонтов А. Г., Малеханов А. И. Согласованная пространственная обработка сигналов в подводных звуковых каналах (обзор) // Акустический журнал. – 2015. – Т. 61. – №. 2. – С. 233-233.
- 5. Машошин А. И. Практические задачи гидроакустики, решаемые с использованием алгоритмов обработки сигналов, согласованных со средой их распространения (обзор) // Фундаментальная и прикладная гидрофизика. 2017. Т. 10. №. 1. С. 37-48.

- 6. Collins M. D. и др. The multivalued Bartlett processor and source tracking // The Journal of the Acoustical Society of America. – 1995. – T. 97. – №. 1. – C. 235-241.
- Collins M. D., Fialkowski L. T., Lingevitch J. F. Localizing submerged acoustic sources under adverse conditions // Journal of Theoretical and Computational Acoustics. – 2022. – T. 30. – №. 01.
- 8. Zala C. A., Ozard J. M. Matched-field processing for a moving source // The Journal of the Acoustical Society of America. 1992. T. 92. №. 1. C. 403-417.
- 9. Walter F. и др. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain // Nature communications. 2020. T. 11. №. 1.
- 10. Schippkus S., Hadziioannou C. Matched field processing accounting for complex Earth structure: method and review // Geophysical Journal International. 2022.
 T. 231. №. 2. C. 1268-1282.
- Gingras D. F. и др. Electromagnetic matched field processing for source localization // 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. – IEEE, 1997. – Т. 1. – С. 479-482.
- Deygout J. Multiple knife-edge diffraction of microwaves // IEEE Transactions on Antennas and Propagation. – 1966. – T. 14. – №. 4. – C. 480-489.
- 13. Vavilov S. A., Lytaev M. S. Modeling equation for multiple knife-edge diffraction
 // IEEE transactions on antennas and propagation. 2019. T. 68. №. 5.
 C. 3869-3877.
- Марчук Г.И. Сопряженные уравнения и анализ сложных систем. М.: Наука, 1992.
- Марчук Г.И. Математическое моделирование в проблеме окружающей среды. – М.: Наука, 1982.
- 16. Mantzel W., Romberg J., Sabra K. Compressive matched-field processing // The Journal of the Acoustical Society of America. 2012. T. 132. №. 1. C. 90-102.
- 17. Jensen F. B. и др. Computational ocean acoustics. New York: Springer, 2014.

- 18. Вавилов С.А., Лытаев М.С. Модельное уравнение рассеяния электромагнитных волн на тонких диэлектриках // Записки научных семинаров ПОМИ. – 2017. – Т. 461. – С. 95-106.
- Вавилов С.А., Лытаев М.С. О рассеянии электромагнитных волн на массиве из тонких диэлектриков // Записки научных семинаров ПОМИ. – 2018. – Т. 471.– С. 86-98.
- 20. Apaydin G. и др. A novel two-way finite-element parabolic equation groundwave propagation tool: Tests with canonical structures and calibration // IEEE transactions on geoscience and remote sensing. 2011. Т. 49. №. 8. С. 2887-2899.
- 21. Ахияров В. В. Вычисление множителя ослабления при обратном рассеянии от земной поверхности методом параболического уравнения // Журнал радиоэлектроники. 2019. №. 11.
- 22. Lytaev M. S. Tropospheric radio wave propagation modeling in Python 3 using PyWaveProp //2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation (APCAP). – IEEE, 2023.

Для цитирования:

Лытаев М.С. Анализ возможности согласованной со средой локализации источника излучения в условиях дифракции и множественного переотражения. // Журнал радиоэлектроники. – 2024. – № 8. https://doi.org/10.30898/1684-1719.2024.8.9