Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹8
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.8.13
PREDICTION OF spurious electromagnetic emission
FROM AN ELECTRIC POWER CONVERTER
USING AN ARTIFICIAL NEURAL NETWORK
Z.M. Gizatullin, I.D. Fatykhov, R.S. Nurtdinov
Kazan National Research Technical University named after A.N. Tupolev-KAI,
10 Karl Marx Str., Kazan, 420111, Russia
The paper was received May 13, 2025.
Abstract. Spurious electromagnetic emission arising during operation of power converters can create a significant problem of electromagnetic compatibility for components of complex electronic systems. Therefore, when designing electronic systems, it is necessary to estimate the possible parameters of such emission in advance and, if necessary, take protective measures in advance. Existing approaches to predicting electromagnetic emission often do not allow to fully take into account explicit and implicit electromagnetic processes in power converters and in the operating environment. The article implements a practical technique for predicting the intensity of spurious electromagnetic emission from power converters using an artificial neural network. To demonstrate the possibility of using this tool, an experimental stand for preparing training and test data was created. An example of training an artificial neural network based on experimental data for 100 epochs is given. For the test sample, the average absolute percentage error is no more than 11 %. Examples of predicting the intensity of spurious electromagnetic emission from an electric power converter using a trained neural network are given. Prospects for using this tool are seen in the tasks of predicting electromagnetic interference along power lines, etc.
Key words: artificial neural network, spurious electromagnetic emission, electric power converter, experiment, training, forecasting.
Corresponding author: Gizatullin Zinnur Marselevich, zmgizatullin@kai.ru
References
1. Paul C.R., Scully R.C., Steffka M.A. Introduction to electromagnetic compatibility. – John Wiley & Sons, 2022.
2. Nuriev M.G., Gizatullin R.M., Gizatullin Z.M. Fizicheskoe modelirovanie elektromagnitnyh pomekh v bespilotnom letatel'nom apparate pri vozdejstvii kontaktnoj seti elektrotransporta [Physical modeling of electromagnetic interferences in the unmanned aerial vehicle in the case of high-voltage transmission line impact] // Russian Aeronautics. – 2017. – P. 292-298.
3. Gizatullin Z.M., Shlejmovich M.P. Issledovanie izluchaemyh elektromagnitnyh pomekh ot energeticheskih ustrojstv samoleta na etape ego modernizacii [Research of the Radiated Electromagnetic Interference from Power Devices of the Aircraft under Modernization] // Russian Aeronautics. – 2023. – ¹ 3. – P. 596-604.
4. Bokov G. Elektromagnitnye pomekhi impul'snyh preobrazovatelej [Electromagnetic interference of pulse converters] // Elektronnye komponenty. – 2018. – ¹ 3. – P. 8-11. (In Russian)
5. Kuksenko S.P. and etc. Razrabotka programmnogo obespecheniya dlya modelirovaniya radioelektronnyh sredstv s uchetom elektromagnitnoj sovmestimosti v TUSUR [Development of software for modeling radio-electronic equipment taking into account electromagnetic compatibility at TUSUR] // Nanoindustriya. – 2023. – V. 16, ¹ S9-1(119). – P. 170-178. (In Russian)
6. Gizatullin Z.M. and etc. Prostaya metodika issledovaniya elektromagnitnogo izlucheniya ot elektronnyh sredstv [A simple method for studying electromagnetic radiation from electronic devices] // Journal of Radio Electronics. – 2016. – ¹. 9. – P. 7-7. (In Russian)
7. SHkinderov M.S., Nuriev M.G., Gizatullin Z.M. Skvoznoe prognozirovanie pomekhoustojchivosti sistem kontrolya i upravleniya pri vneshnih elektromagnitnyh vozdejstviyah [End-to-end prediction of noise immunity of control and management systems under external electromagnetic influences] // Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. – 2016. – ¹ 2(30). – P. 26-37. (In Russian)
8. Tumbinskaya M.V., Galiev R.A. Identifikaciya fejk-novostej s pomoshch'yu veb-resursa na osnove nejronnyh setej [Identification of fake news using a web resource based on neural networks] // Programmnye produkty i sistemy. – 2023. – V. 36. – ¹. 4. – P. 590-599. (In Russian)
9. Muhamathanov R.M. and etc. Klassifikaciya DDOS-atak na osnove nejrosetevoj modeli [Classification of DDOS attacks based on a neural network model] // Prikladnaya informatika. – 2019. – V. 14. – ¹ 1 (79). – P. 96-103. (In Russian)
10. Gizatullin Z.M. and etc. Issledovanie algoritma analiza izobrazhenij raduzhnoj obolochki glaza na osnove svertochnoj nejronnoj seti [Study of an algorithm for analyzing iris images based on a convolutional neural network] // Nauchno-tekhnicheskii vestnik Povolzh'ya. – 2023. – ¹ 6. – P.55-57. (In Russian)
11. Lyasheva S.A., Tregubov V.M., Shlejmovich M.P. Analiz izobrazhenij dorozhnyh znakov na osnove vesovoj modeli s ispol'zovaniem vejvlet preobrazovaniya [Analysis of images of road signs based on a weight model using wavelet transform] // Vestnik NCBZHD. – 2020. – ¹. 4. – P. 112-119. (In Russian)
12. Luo M., Huang K.M. Prediction of the electromagnetic field in metallic enclosures using artificial neural networks // Progress In Electromagnetics Research. – 2011. – Ò. 116. – P. 171-184.
13. Gizatullin Z.M., Gizatullin R.M., Mubarakov R.R. Modelirovanie pomekh v elektronnom ustrojstve pri vozdejstvii impul'snogo magnitnogo polya s ispol'zovaniem iskusstvennoj nejronnoj seti [Modeling interference in an electronic device under the influence of a pulsed magnetic field using an artificial neural network] // Journal of Radio Electronics. – 2024. – ¹ 5. https://doi.org/10.30898/1684-1719.2024.5.1 (In Russian)
14. Gizatullin Z.M., Mubarakov R.R. Prognozirovanie pomekh elektrostaticheskogo razryada v elektronnom ustrojstve s ispol'zovaniem iskusstvennoj nejronnoj seti [Prediction of electrostatic discharge interference in an electronic device using an artificial neural network] // Journal of Radio Electronics. – 2024. – ¹ 8. https://doi.org/10.30898/1684-1719.2024.8.3 (In Russian)
15. Gizatullin Z.M., Mubarakov R.R. Prognozirovanie konduktivnyh pomekh ot preobrazovatelya elektroenergii s ispol'zovaniem iskusstvennoj nejronnoj seti [Prediction of conductive interference from electric power converter using artificial neural network] // Journal of Radio Electronics. – 2025. – ¹. 4. https://doi.org/10.30898/1684-1719.2025.4.10 (In Russian)
16. Zhgun D.V. Izmerenie radiopomekh ot vysokovol'tnyh impul'snyh ustrojstv [Measuring Radio Interference from High-Voltage Pulse Devices] [Elektronnyj resurs]. URL: (date of access 05.05.2025) (In Russian)
17. De Marchi L., Mitchell L. Hands-On Neural Networks: Learn how to build and train your first neural network model using Python. – Packt Publishing Ltd, 2019.
18. Khadse C.B., Chaudhari M.A., Borghate V.B. Electromagnetic compatibility estimator using scaled conjugate gradient backpropagation based artificial neural network // IEEE Transactions on Industrial Informatics. – 2016. – V. 13. – ¹. 3. – P. 1036-1045.
19. Gazizov T.R. and etc. Puti resheniya aktual'nyh problem proektirovaniya radioelektronnyh sredstv s uchetom elektromagnitnoj sovmestimosti [Ways of solving actual problems of designing radio-electronic facilities with regard to electromagnetic compatibility] // Tekhnika radiosvyazi. – 2014. – ¹ 2(22). – P. 11-22. (In Russian)
20. Kvasnikov A.A., Kuksenko S.P. Obzor ekspertnyh sistem po elektromagnitnoj sovmestimosti tekhnicheskih sredstv [Review of expert systems for electromagnetic compatibility of technical means] // Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki. – 2021. – V. 24. – ¹ 4. – P. 7-18. (In Russian)
21. Safina R.M., Shkinderov M.S., Mubarakov R.R. Pomekhoustojchivost' sistem kontrolya i upravleniya dostupom v zdaniya pri vozdejstvii elektromagnitnyh pomekh po seti elektropitaniya [Noise immunity of control and management systems for access to buildings under the influence of electromagnetic interference through the power supply network] // Journal of Radio Electronics. – 2021. – ¹ 6. https://doi.org/10.30898/1684-1719.2021.6.9 (In Russian)
22. SHaripov R.R., Makarov S.P., Kassirova A.A. Razrabotka programmnogo kompleksa potokovogo shifra rc4 dlya obuchayushchihsya po discipline «Kriptografiya» [Development of a software package for the rc4 stream cipher for students majoring in Cryptography] // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. – 2024. – ¹. 9 (147). – P. 39. (In Russian)
23. Gizatullin Z.M. and etc. Povyshenie ustojchivosti detektora konturov Kenni k vozdejstviyu pomekh [Increasing the stability of the Canny contour detector to interference] // Nauchno-tekhnicheskij vestnik Povolzh'ya. – 2023. – ¹ 7. – P. 25-28. (In Russian)
For citation:
Gizatullin Z.M., Fatykhov I.D., Nurtdinov R.S. Prediction of spurious electromagnetic emission from an electric power converter using an artificial neural network // Journal of Radio Electronics. – 2025. – ¹ 8. https://doi.org/10.30898/1684-1719.2025.8.13 (In Russian)