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Abstract. We apply to study coupled receiving antennas a theory of electromagnetic 

wave multiple scattering by ensemble of dielectric and conductive bodies, with 

describing the excited currents inside bodies in terms of electric field tensor T-

scattering operator. A system of equations for currents on surfaces of coupled 

perfectly conductive receiving antennas is written with the aid of a single antenna 

surface T-scattering operator. This system  is resolved for the case of coupled linear 

wire receiving antennas in the form of thin vibrator-dipoles when asymptotic method 

of “big logarithm“ leads to separable wire T-scattering operator of single tuned 

vibrator-dipole. The separability simplifies analytic evaluating the local total currents 

on two (and more) coupled receiving antennas and get a dimensionless coupling 

factor. Our final aim consists in using the obtained analytic solution to study near 

field coherent effects caused by thermal microwave radiation incident electric field 

distribution along single or two coupled receiving vibrator-dipole antennas placed at 

a heated biological object boundary surface and tuned to half wavelength in the 
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object. In the case of equilibrium thermal radiation we meet a generalized Nyquist 

formula for currents’ fluctuations excited on coupled receiving vibrator-dipole 

antennas, with accounting the auto-correlation and cross-correlation functions of 

random electric field inside each antenna and on both antennas, respectively. In the 

case of local volume change of the biological object temperature distribution we 

reveal in the model framework of random electric dipole source inside object 

absorption skin slab area the interference-extreme properties for fluctuations of 

currents excited along antennas depending on relative positions of antennas and 

random electric dipole source. The reveled extreme properties are used as base to 

reconstruct the random electric dipole position via scanning the single antenna or two 

coupled ones along biological object boundary surface. 

Key words:  receiving coupled antennas, excited currents, T- scattering operator, thin 

vibrator antennas, biological object, temperature local variation, thermal radiation, 

interference receiving fields, scanning local random source.  

Аннотация. Мы применяем теорию многократного рассеяния 

электромагнитных волн на ансамбле  диэлектрических и проводящих тел для 

изучения взаимодействующих принимающих антенн, описывая возбужденные 

внутри антенн токи с помощью тензорного T –оператора рассеяния 

электрического поля.  Система уравнений для токов на поверхностях 

взаимодействующих металлических принимающих антенн записывается с 

помощью поверхностного T- оператора рассеяния изолированной антенны. 

Записанная система решается для случая взаимодействующих линейных 

проволочных принимающих антенн в форме тонких вибраторов – диполей 

асимптотическим методом “ большого логарифма “, приводящим к 

сепарабельному линейному T- оператору рассеяния изолированного 

настроенного вибратора-диполя.  Сепарабельность  упрощает  аналитическое 

вычисление локальных токов на двух ( и более) взаимодействующих антеннах и 

безразмерного параметра взаимодействия антенн. Наша   окончательна   цель 

состоит в использовании полученного аналитического решения  к изучению 

ближнеполевых   когерентных  эффектов, обусловленных распределением  
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падающего электрического поля теплового микроволнового излучения  вдоль 

изолированного  или двух взаимодействующих принимающих вибраторов-

диполей, расположенных около граничной поверхности нагретого 

биологического объекта и настроенных на половину длины волны в объекте.  

При равновесном тепловом излучении  мы приходим к обобщенной  формуле 

Найквиста для  флуктуаций токов, наведенных на взаимодействующих 

принимающих вибраторах-диполях, с учетом авто-корреляционной   и кросс-

корреляционной функций   случайного электрического  поля на каждом или 

обоих вибраторах-диполях, соответственно.  Рассматривая локальное объемное 

изменение распределения температуры биологического объекта, мы 

обнаруживаем в рамках модели случайного электрического дипольного 

источника внутри поглощающего скин-слоя  объекта  интерференционно-

экстремальные свойства возбуждаемых вдоль принимающих вибраторов – 

диполей  флуктуационных токов в зависимости от относительного 

расположения вибраторов-диполей и случайного электрического дипольного 

источника теплового излучения. Обнаруженные экстремальные свойства 

используются как основа для восстановления расположения случайного 

электрического дипольного источника путем сканирования изолированным или 

двумя взаимодействующими  принимающими вибраторами-диполями вдоль 

граничной поверхности биологического объекта.  

Ключевые слова: принимающие взаимодействующие  антенны, возбужденные 

токи, T- оператор рассеяния, тонкая вибраторная антенна, биологический 

объект, локальная вариация температуры, тепловое излучение, интерференция 

принимаемых полей, сканирование локального случайного источника.  

 

Introduction 

Measuring method of the temperature spatial distribution inside of a biological 

tissue object by recording its own thermal radiation in the microwave range is well 

known at the present time [1]. During the last twenty years, there has been realized 

that a contact antenna [2-4] or system of contact antennas [5] are situated in the area 
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of a heated object thermal near fields, which have basically the form of evanescent 

electromagnetic waves exponentially decaying in perpendicular to the object 

boundary surface direction accordingly with Rytov’s prediction [6]. 

Note, mean size D  of a contact antenna aperture is rationally to be chosen in 

accordance with [2-5] as being much smaller than radiation wavelength λ  in free 

space and of the order of the radiation wavelength 1λ  inside a biological object, i.e., 

λλ <<≤ D1 . Such inequalities suppose the real part ε ′  of biological tissue complex 

dielectric permittivity εεε ′′+′= i  in microwave range to be substantially greater the 

dielectric permittivity 0ε  of free space that is really the case for some tissues. For 

example, the dielectric permittivity of human head brain may be taken at frequency 

f  = 780 MHz to be 5.830 i+=ε  [5] that gives λ  = 39 cm, 1λ  = 7 cm and 

absorption skin depth skd  = 12/1 k ′′ = 4 cm where 1k  = ε0k  = 11 kik ′′+′  is the 

complex wave number inside brain medium, with 0k  = λπ /2  and 1k ′  = 1/2 λπ . 

Under above inequalities putting on mean size aperture, the contact antenna receives 

strong decaying evanescent waves of thermal radiation in free space, which 

correspond to weak decaying evanescent waves inside biological object. 

The wave theory [6,7,8] of an absorbing body thermal electromagnetic 

radiation having been published , Levin and Rytov [9] and Rytov et al [10] have 

considered some problems on current excitation in metallic antennas by thermal 

radiation fields, including the case of thin metallic antennas (linear wire antennas). To 

considered problems are related: (i) antenna excitation in equilibrium thermal 

radiation field; (ii) current excitation in antenna by thermal radiation of distant 

bodies; (iii) current excitation in coupled antennas, with phenomenological 

accounting of coupling effect by antenna mutual impedance. 

The aim of our presented work is to consider the current excitation in coupled 

receiving antennas by incident electromagnetic field, with evaluating the coupling 

effect via analytic solution to system of equations for currents’ distribution on 

coupled linear wire tuned antennas. Especially we intend to study the current 
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excitation in such antennas by thermal radiation of small body placed in near field 

zone of antennas, as well as by equilibrium thermal radiation. Actually our work 

consists in the following. 

Because electromagnetic mutual interaction (coupling) the antennas is included 

in theory of wave multiple scattering by ensemble of bodies [11], we write the 

volume current density inside a body in terms of the body electric field tensor T-

scattering operator [12-17] and then derive the general system of equations for 

volume current densities inside all bodies of ensemble ones with the aid of Watson 

composition rule [12, 15] for scattering operators. A specific property of the derived 

system of equations for currents’ densities inside bodies consists in that the system is 

written in terms of single body T-scattering operator. In particular case of antennas 

placed at a heated biological object boundary surface the derived general system of 

equations for volume currents’ densities inside antennas takes into account also the 

coupling effects between antennas and object boundary surface (inhomogeneous 

object) that we do neglect  in our concrete calculations. What is more, bearing in 

mind that mean size D  of contact antennas conforms to wavelength 1λ  inside a 

biological object, we think them as were placed in the object boundary subsurface, 

with thickness being not more or order the absorption skin depth skd . On the way of 

such simplifications the mentioned general system of equations is transformed to a 

reduced system of equations for surface currents’ densities on surfaces of coupled 

perfectly conducting receiving antennas written with the aid of a single antenna 

surface T-scattering operator. The reduced system supposes all coupled antennas to 

be placed in an effective unbounded medium, with wave number being equal to wave 

number 1k  inside the biological object under study. The next our step consists in 

passing to linear wire antennas, with mean diametrical size a of each wire being very 

small compared to wire length D  and wavelength 1λ , Da << ; 1λ<<a . Passing to 

linear wire replaces the above single antenna surface T-scattering operator to single 

wire T-scattering operator that is one-dimensional kernel, which expresses the total 

current in a cross section of the wire through excited electric field component along 
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wire. According to Levin and Rytov [9], the single wire T-scattering operator of 

tuned linear wire antenna, 2/1λnD =  (n  is integer number), takes a simple 

separable form in asymptotic limit of “big logarithm” when parameter 

)ln2/(1 1ak ′=η  has a small value. Theory of this asymptotic limit was elaborated by 

Leontovich and Levin [18] after Hallen paper [19] for analytic solution to 

Pocklington integral equation [20] that describes the current distribution along linear 

wire antenna depending on excited electric field component along the wire. We use 

the separable form of the single wire scattering operator to resolve the system of 

equations for currents’ distributions along two coupled tuned linear wire antennas in 

terms of excited electric field components along both wires and their coupling factor, 

which is defined as ratio of antenna mutual impedance to self-impedance of a single 

antenna and evaluated directly. The mutual impedance of two wire antennas was 

studied earlier [21, 22] for transmitting antennas with the aid of more complicated 

method; convenient formulas for mutual impedance of antennas placed on big distant 

between them are considered in paper [23]. The obtained currents’ distributions along 

coupled tuned linear wire antennas are applied to the case when exciting  electric 

field is caused by thermal radiation of a biological object, with temperature being 

equal to sum of homogeneous component 0Θ  and temperature local volume spatial 

variation )(rrΘδ . The homogeneous component of the object temperature 0Θ  creates 

an equilibrium thermal radiation that is characterized by standard form [10] of 

electric field spatial correlation function as electric field tensor Green function 

imaginary part, with a scalar factor being in front of it. A local volume variation of 

the object temperature )(rrΘδ  gives rise to the thermal radiation from corresponding 

local random electric current density variation ( )rj src rrδ  (dipole) delta-correlated 

with respect to spatial position and polarization (orientation). Such electric current 

( )rj src rrδ  can be thought as sum of three mutually perpendicular and statistically 

independent random currents (dipoles). On this way we come to a model of random 

electric dipole source inside a biological object oriented parallel to coupled tuned 
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linear wire antennas. We suppose the random dipole to be placed in near wave zone 

of both antennas and evaluate the antennas’ excitation via this dipole with the aid of 

method elaborated by Brilliouin [24], Pistolkors [25], and Bechmann [26] to study 

electromagnetic field in near zone of linear wire antenna (see also [27]). This model 

of random electric dipole source reveals the interference – extreme properties for 

fluctuations of excited in antennas currents depending on relative positions of 

antennas and the random dipole source. The revealed interference – extreme 

properties are analyzed from viewpoint to reconstruct the random dipole source 

position via special arrangement of two antennas on biological object boundary 

surface or via special scanning the single antenna along this boundary surface. 

The organization of the paper is as follows. In Sec.2 the general equations’ 

system for volume currents’ densities inside coupled receiving antennas near 

biological object boundary surface is written in terms of a single antenna electric field 

tensor T –scattering operator. In Sec.3 the derived general system is transformed to 

reduced system of equations for surface currents on perfectly conducting antenna’s 

surfaces written in terms of a single antenna surface T- scattering operator. In Sec. 4 a 

passing to system equations for currents along coupled linear wire antennas is 

described and these equations’ system is written in terms of a single wire T-scattering 

operator. In Sec. 5 the equations’ system for currents along two coupled turned linear 

wire antennas is resolved in asymptotic limit of the so-called “big logarithm”. In Sec. 

6 the obtained currents’ distributions along coupled tuned linear wire antennas is 

applied  to the problem of antennas’ exciting by a biological object thermal radiation 

via the object temperature homogeneous component. In Sec. 7 a local volume 

variation of the object temperature is modeled by corresponding random electric 

dipole source and the interference- extreme properties for fluctuations of excited in 

antennas’ currents depending of relative positions of antennas and the random dipole 

source are considered. Conclusions are made in Sec. 8. 
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Coupled receiving antennas at biological object boundary 

We start with the Helmholtz vector wave equation for electric field )(rE rr
 of a 

monochromatic electromagnetic wave of frequency ω  in a three -dimensional (D3 ) 

inhomogeneous isotropic dielectric and conducting structure writing the equation as 

)(
4

)()()(ˆ 202

2
2 rj

ic
rErVr

c
src rrrr
αβαββααβ

πωδεωδ =







−+∇∇−∇           (1) 

Our structure consists of homogeneous biological object occupying (Fig. 1) the left 

half space y  > 0 of the Cartesian coordinate system zyx ,,  and receiving antennas 

placed at the object boundary surface y = 0. Symbol )(ˆ0 rrε  denotes the complex 

dielectric permittivity of the structure without antennas (bounded biological object) 

equal to dielectric permittivity 0ε  = 1 in free space y  < 0 and )/4( ωπσεε i+′=  

inside biological object y  > 0, with ε ′  and σ  being real part of the complex 

dielectric permittivity and specific conductivity of the object, respectively. An 

effective “scattering potential” )(rV r of antennas is defined by 

)()()ˆ()( 02

2

rVrr
c

rV
q

qq
q

A
rrrr

∑∑ ≡−−−= χεεω
                           (2) 

where )/4(ˆ ωπσεε AAA i+=  is the complex dielectric permittivity of antenna, 
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Figure 1. Schematic showing of biological object (grey area; dotted line 

symbolically visualizes an absorption skin depth skd ) thermal radiation receiving 

on two coupled antennas whose length, diameter and the distance along the x-axis 

direction are denoted as hD 2= , a2 , and b  respectively; Da << . The 

designations 0Θ , )(rrΘδ , and ( )rj src rrδ  stand for homogeneous and random 

local volume variations of the object temperature )(rrΘ , and local electric current 

density variation related to the local temperature variation )(rrΘδ , respectively. 

 

with Aε  and Aσ  being its real dielectric permittivity and specific conductivity, 

respectively. The function )( qrr rr −χ  is the characteristic function of the q -th 

antenna, equal to unity if point rr  belongs to the region occupied by the q -th antenna 

and equal to zero otherwise. The antennas are assumed to be identical and centered at 

positions qr
r , ,...3,2,1=q . Each antenna is characterized by a single scattering 

potential )(rVq
r , defined via Eq.(2). The magnetic permittivity is supposed to be 

1=µ  everywhere. The vector )(rj src rr
 denotes the electromagnetic field source 

volume current density, which can be random as in the case of biological object 

thermal radiation. The summation over repeated Greek subscripts is implied in the 

limits from 1 to 3, with 1, 2, 3 corresponding to the zyx ,,  axes. The Gaussian 

system of units is used and c  denotes the light speed in the free space.  

We are interested in the electric currents excited inside antennas. Let us 

introduce a vector 

)(
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)()()ˆ(
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4
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π
ωσπω ≡−




 −+≡

=
         ( 3) 

that presents accurate with the factor 2/4 icπω  a sum )()( rj q rr
 of volume conducting 

and displacement current densities inside the q -th antenna. A complete current 
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density )()( )( rJrJ
q

q rrrr
∑=  excited in all antennas can be evaluated, provided the 

electric field tensor T -scattering operator ),( rrT ′rr
αβ  [16,17] of antennas’ system is 

known . Really, denote ),(0 rrG ′rr
αβ  the electric field retarded Green tensor function 

of the bounded biological object, which satisfies the Helmholtz Eq.(1) without 

antenna scattering potential in the left-hand side (LHS) and with the delta-source 

term )( rr ′− rrδδαβ  in the right-hand side (RHS) of the equation and the radiation 

conditions in the infinity. The electric field Green tensor function 0G  enables one to 

bring [15-17] a solution problem for the Helmholtz Eq.(1) to wave integral equation 

)()(),()()( 00 rErVrrGrdrErE ′′′′+= ∫
rrrrrrr

βαβαα                               (4) 

Here )(0 rE rr
 denotes the incident on antennas electric field given by  

)(),(
4

)( 0
2

0 rjrrGrd
ic

rE src ′′′= ∫
rrrrr

βαβα
πω

                                 (5) 

Solution to the wave integral Eq.(4) is presented [15-17] in terms of the electric field 

tensor T -scattering operator of antennas’ system by an equality that has a form 

)(),(),()()( 000 rErrTrrGrdrdrErE rrrrrrrrr ′′′′′′′′′+= ∫ ∫ γβγαβαα                    (6) 

Comparison of this equality with integral Eq.(4) gives the Lippmann- Schwinger 

equation for the electric field T - scattering operator of antennas’ system 

),(),()()()(),( 0 rrTrrGrdrVrrrVrrT rrrrrrrrrrr ′′′′′′′+′−=′ ∫ γβαγαβαβ δδ           (7) 

and a symbolic operator relation 0ETEVJ =≡ , which in details is written as 

)(),()( 0 rErrTrdrJ ′′′= ∫
rrrrr

βαβα                                           (8) 

The obtained relation shows that one can indeed evaluate the complete current 

density excited in all antennas, having known the electric field tensor T - scattering 

operator of antennas’ system and the incident on antennas electric field. 

The wave integral Eq. (4) can be derived with the aid of vector Green theorem 

and the boundary conditions on antennas surfaces and at infinity, with similar to [16] 

manipulating for the case of bodies’ system in free space. 
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Side by side with the electric field T -scattering operator of antenna’s system it 

is convenient to consider also the electric field T -scattering operator of a single q -th 

antenna qT , that satisfies the Lippmann-Schwinger equation with the single 

scattering potential, qqqq TGVVT 0+= . According to Watson composition rule 

[12,15] connection between T - scattering operator of antenna’s system and single 

scattering operators qT  of antennas is given by a system of operator equations 

∑∑
≠′

′+==
qq

q
qq

q

q

q TGTTTTT )(0)()( ;                               (9) 

Here )(qT  has sense of T - scattering operator of q -th antenna coupled with all other 

antennas. Convolving Eq.(9) with the incident electric field 0E  gives for current 

densities 0)()( ETJ qq =  inside antennas (3) a basic system of equations 

∑∫ ∫
≠′

′ ′′′′′′′′′+=
qq

q
qq

q rJrrGrrTrdrdrJrJ )(),(),()()( )(0)( rrrrrrrrr
γβγαβαα                (10) 

written in terms of current densities inside of single antennas 0ETJ qq =  and the 

single scattering operators qT  of antennas. 

The basis system of Eqs .(10) for currents’ densities inside antennas is too 

complicated, having accounting the coupling effect not only between antennas but 

also between antennas and bounded biological object. In the next section the system 

(10) is simplified via accounting the coupling effect between antennas only. 

 

Coupled receiving perfectly conducting antennas inside the object 

boundary subsurface 

Remind that in practice [2-5] the mean size of contact antennas conforms to 

wavelength 1λ  inside a biological object. We use that conformity to avoid the 

problem of coupling between antennas and biological object boundary, with replacing 

in all equations of the preceding section the electric field Green tensor function 

),(0 rrG ′rr
αβ  of the bounded biological object to the Green tensor function 
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)(0 rrG ′− rr
αβ  of unbounded biological object. Simultaneously one needs replacing in 

Eqs. (2) and (3) the permittivity 0ε  to ε .  

We consciously use such rather rough approach to focus our attention on 

coupling effects between antennas at receiving the biological thermal radiation. 

The above electric field Green tensor function of unbounded biological object 

is given by 

( ) )()(
4

)(/)( 0

2

0
2
1

0 rrGrL
ic

rrGkrrG ′−≡′−∇∇+=′− rrrrrrr
αββααβαβ

πω
δ   (11) 

where )4/()exp()( 10 rrikrG π−=  denotes a scalar Green function. The basic 

Eqs.(10) for currents densities )()(
q

q rj rr
 inside two coupled antennas 2,1=q  takes a 

form  

[ ]∫

∫

″″−′′″+′

′′=

)()()()(

),()(
4

2
)2(

210121
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11111
)1(
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rjrrGrLrdrE
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rrrrrr

rrrr

γβγβ

αβα
πω

               (12) 

and  

[ ]∫

∫

″″−′′″+′

′′=

)()()()(

),()(
4

1
)1(

120212
0

22222
)2(

2

rjrrGrLrdrE

rrTrdrj
ic

rrrrrr

rrrr

γβγβ

αβα
πω

           (13) 

where indices 1 and 2 are related to antennas 1 and 2 (Fig.1), respectively, and 

integrations are performed inside volumes of these antennas.  

The next problem consists in evaluating the single scattering operators 1T  and 

2T  of antennas 1 and 2. Instead of direct solution to the Lippmann- Schwinger 

equation for a single scattering operator mentioned before a system of Eqs.(9), we 

remind an expression after Eqs.(10) for current density inside a single scattering 

antenna in terms of its single scattering operator and incident electric field, with 

rewriting the total electric field (6) everywhere around and inside antenna as  

)()()()( 1
00 rJrrGrdrErE ′′−′+= ∫

rrrrrr
βαβαα                          (14) 
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Resolving this equation with respect to current density )(1 rJ rr
 gives a convenient tool 

to find the single scattering operator Green theorem of perfectly conducting antenna. 

But previously to make so we need discussing some  general properties of Eq. (14) 

for a body with finite dielectric permittivity. 

The integral Eq. (14) for electric field )(rE rr
, with replacing )(1 rJ rr

 to 

)()(1 rErV rrr , is known in wave multiple scattering  theory for a long period of time 

and often related to pioneering papers of Foldy [28] and Lax [29]. Nevertheless, an 

opinion exists [30] that one needs verifying consistence the Eq. (14) with boundary 

conditions on the body surface directly. In this connection we would like to make the 

two following remarks. 

First, as was mentioned after Eq, (8), the Eq. (14) has been derived [16] with 

the aid of vector Green theorem and accounting the boundary conditions. 

Second, Eq. (14) is a three- dimensional singular integral equation and 

demands some accuracy at handling with it. If point rr  is placed inside the body one 

has to take into account the strong singularity of the tensor Green function, Eq. (11), 

at rr rr →′ , with decomposing [31-33] the one into a delta Dirac function term 

)()/1( 2
1 rrak ′− rrδαβ  and principal part ),(0 rrGPS ′− rr

αβ  where a constant tensor 

αβa  depends on the shape of the exclusion domain chosen to define the principal 

part. If the exclusion domain is an infinitesimal sphere the tensor .3/αβαβ δ=a  

Substituting the decomposed tensor Green function into Eq. (14) gives after [32,34] 

an equation 

)()(ˆ)()()( 0
0

0 rFrVrrGrdLimrErF
arr

a ′′′−′+= ∫
≥′−

→
rrrrrrr

rr
βαβαα               (15) 

where integration in the RHS is performed over body volume, with excluding an 

infinitesimally small spherical domain around point rr . A local electric field )(rF rr
 

and transformed scattering potential )(ˆ rV r  are defined by 

)(
2

ˆ
3)(ˆ);(

3

2ˆ
)( 1

2
1 rrkrVrErF

A

AA rrrrrrs
−

+
−−=+= χ

εε
εε

ε
εε

           (16) 
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The strong singular term of the tensor Green function in Eq. (11) at 0=′rr  and 

0→r  has a form 3/)ˆˆ3( rrr βααβδ −  and becomes of zero value by averaging over 

unit vector r̂  along vector rr  directions. Hence the integral in the sense of principal 

value in the RHS of Eq. (15) is good defined one and can be expressed according to 

general theory of many dimensional singular integrals [35] as sum of absolutely 

converged integrals. However, Eq. (15) does not show directly its consistence with 

boundary conditions. Therefore we transform this equation to a physically transparent 

form usual for theory of electromagnetism [27]. 

Let us apply a lemma (see, e.g., [36], appendix 50) as the rule to bring out the 

second derivative outside the three dimensional singular integral  

)(
3

1
)()(

)()(

00

00

rararrGrdLim

rarrGrdLim

arr
a

arr
a

rrrrr

rrrr

rr

rr

αββα

βα

δ−′′−′∇∇=

′′−∇∇′

∫

∫

≥′−
→

≥′−
→

        (17) 

where )(ra r  is some scalar test function. This lemma enables one to transform 

Eq.(15) as follows  

)()div()()( 2
10 rkrErE rrrrrr

Π∇++=                              (18) 

Here )(rr
r
Π  denotes the Hertz vector that is written in terms of the body polarization 

vector )(]4/)ˆ[()( rErP A
rrrr

πεε −=  as 

)(
)exp(1

)( 1 rP
rr

rrik
rdr ′

′−
′−

′=Π ∫
rr

rr

rr
rrr

ε
                                (19) 

with omitting the limit symbol at the RHS integral. The scalar electric potential 

)(div)( rr rrr ∏−=ϕ  is evaluated by applying the divergence operator under integral 

sign in the RHS of Eq. (19). Then similar to the case of dielectric polarization in 

electrostatics (see [27], paragraph 3.13) one can introduce a volume density 

)(div)/1()( rPr rrr ερ −=  of body electric polarization charge for point rr  inside the 

body and a surface )()/1()( SS rPnr rrrr εσ =  density one for point Sr
r  on the body 

surface where nr  is the outward unit normal vector to the surface. The surface charge 
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is coursed by polarization vector discontinuity at the body surface crossing and leads 

to discontinuity of the electric field (see [27], paragraph 3.15) on the body surface 

according the equation 

nEE rrr
πσ4=− −+                                               (20) 

where the subscript plus and minus are related to regions out and inside the body at 

surface point Sr
r , respectively. Eq. (20) means discontinuity the normal component of 

electric field at the body surface crossing according to relation −+ = EnEn A

rrrr εε ˆ  as 

well as continuity of electric field tangential component at the body surface crossing.  

Having verified the consistence of Eq. (14) with the boundary conditions on 

the body surface, let us return to system Eqs. (12) and (13) for currents’ densities 

inside two coupled antennas. In the limit of a perfectly conducting antenna the 

current density inside its volume becomes to be confined near the antenna surface S . 

Therefore we write, e.g., ( )( ) ( ) dSrirdrj )(11 rrrrr
=  where rd r  and Sd  are elements of 

antenna volume and surface, respectively, as well as ( )( )rj rr 1  and ( ) )(1 ri rr
 are antenna 

volume and surface current densities, respectively. We write similarly a relation 

( ) rdrdrrT ′′ rrrr,αβ  = SddSrrt ′′),( rr
αβ  defined a surface T - scattering operator 

),( rrt ′rr
αβ . Substituting into Eqs. (12) and (13) gives 

[ ]∫

∫

″″−′′″+′

′′=

)()()()(

),()(
4

2
)2(

210121
0

11111
)1(

2

rirrGrLSdrE

rrtSdri
ic

rrrrr

rrr

γβγβ

αβα
πω

           (21) 

and 

[ ]∫

∫

″″−′′″+′

′′=

)()()()(

),()(
4

1
)1(

120212
0

22222
)2(

2

rirrGrLrSdrE

rrtSdri
ic

rrrrr

rrr

γβγβ

αβα
πω

            (22) 

Here the indices 1 and 2 are related to antennas 1 and 2, respectively, but in deference 

from Eqs.(12) and (13) the integrations are performed now along the surfaces of 
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antennas 1 and 2. Because the total electric field )(rE rr
 on perfect conducting 

antenna’s surface is equal to zero the Eq.(18) takes a form 

0)()()()( 10
0 =′′−′+ ∫ rirrGSdrLrE rrrrr

βαβα                             (23) 

if point rr  is placed on the antenna 1 surface. Resolving Eq.(23) with respect to the 

surface current density and bearing in mind a relation  

)(),()(
4

1
0

11111
)1(

2
′′′= ∫ rErrtSdri

ic
rrrr

βαβα
πω

                                (24) 

one can get the desired single surface T - scattering operator ),(1 rrt ′rr
αβ  of antenna 1. 

 

Coupled receiving linear wire antennas  

Consider the case of linear wire antennas in the form of thin vibrator- dipoles 

to be parallel to z  axis and occupying the regions hzh ≤≤−  as depicted in Fig.1. 

For a cylindrical vibrator with diameter a2  only tangential component )(ziz  of the 

surface current density )(zi
r

 exists and one can introduce a total current 

)(2)( ziazI zπ=  in the cross-section z  of the vibrator. Eq.(23) for the surface 

current density of a single antenna is transformed in the case of linear wire antenna 

under consideration to the Pocklington integral equation [20] (see also [37]) 

),(),( 02
12

2

zarEizarAk
dz

d
zz =′==










′+ εω                          (25) 

with vector potential z -component ),( zrAz  given by  

)(
)exp(

2

1
),( 1

2

0

zI
R

Rki
zddzrA

h

h
z ′′′′= ∫∫

−

π
φ

π
                               (26) 

Here rrR ′−= rr  as well as the observation ),,( zrr φ=r  and source ),,( zrr ′′′=′ φr  

points are presented in cylindrical coordinates. The z - component of vector potential 

(26) is evaluated asymptotically for thin vibrator near zone, where 11 <<′ rk  and 

zzR ′−≈ , as a sum of logarithm’s and addition terms  

[ ]zIWrkzIzrAz ,)(ln)(2),( 1 +′−≈                                        (27) 
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with addition term [ ]zIW ,  having a current functional form  

[ ] )2(ln)exp()(
)(

, 111 zzkzzkizIki
zd

zId

zz

zz
zdzIW

h

h

′−′′−′







′′′−

′
′

′−
′−′= ∫

−

  (28) 

Substituting the vector potential z - component asymptotics (27) into Pocklington 

integral Eq.(25) leads to the Leontovich – Levin version [18] of Hallen integro-

differential equation [19] (see also [37]) for current distribution )(zI  along single 

linear wire thin vibrator-dipole receiving antenna  

[ ]{ } 0)(;,)(02
12

2

=±+′−=′+ hIzIGzEiIk
dz

Id
zηεω                    (29) 

where current functional [ ]zIG ,  is defined by 

[ ] [ ]zIWk
dz

d
zIGi ,, 2

12

2











′+=′− εω                                        (30) 

Remind that )ln2/(1 1ak ′=η  is small parameter in asymptotic limit of “big 

logarithm”. 

Relation (24) between a single antenna surface current density and antenna 

single surface T - scattering operator takes in the limit of linear wire thin vibrator –

dipole antenna the form 

)(),()(
4 0

2
zEzztzdzI

ic
z

h

h

′′′= ∫
−

πω
                                         (31) 

with a single wire T - scattering operator ),( zzt ′  defined by 

( )),;,),(
2

0
1

2

0

φφφφ
ππ

′′′=′ ∫∫ zztdadazzt zz                                  (32) 

Similarly,  the system of Eqs. (21) and (22) for surface current densities of two 

coupled antennas passes to equation system for current )()(
q

q zI  distributions along 

two coupled linear wire antennas q  = 1,2 written in terms of single wire T - 

scattering operators ),( qqq zzt ′  as 
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′′′′′′′′+′′′= ∫∫

−−
)(),()()(),()(

4
2

)2(
210211

0
11111

)1(
2

zIzzGzdzLzEzztzdzI
ic

h

h
zzz

h

h

πω
   (33) 

and 









′′′′′′′′+′′′= ∫∫

−−

)(),()()(),()(
4

1
)1(

120122
0

22122
)2(

2
zIzzGzdzLzEzztzdzI

ic

h

h
zzz

h

h

πω
   (34) 

Here )4/()exp(),( 12121210 RRkizzG π−′=  where 2
21

22
12 )( zzbR −+=  and b  is the 

distant between antennas (Fig. 1). In the next section we present asymptotic solution 

to Leontovich – Levin-_Hallen Eq.(29) and to equation system (33) and (34). 

 

Current distributions along two coupled tuned receiving linear wire 

antennas in the limit of “big logarithm” 

Bearing in mind the small parameter η  one can apply after [18] the 

perturbation method of solution to Eq.(29) for current distribution )(zI  along single 

linear wire antenna in the form of expansion L+++= 2
2

10 IIII ηη  with result of 

substitution 

0)(;0)( 00
2

12
=±=










′+ hIzIk

dz

d
                                                  (35) 

[ ]{ } 0)(;,)()( 1
0

1
2

12
=±+′−=










′+ hIzIGzEizIk

dz

d
zεω             (36) 

This system of equations should be resolved successively. We restrict ourselves by 

simple case of tuned vibrator-dipole. 

The length h2  of tuned vibrator – dipole is equal to the whole multiple of half 

wavelength 2/1λ  in the biological object, 2/1 πnhk =′  or 2/2 1λnh = , with n  

being integer. Eq.(35) for zero approximation has a solution )()( 00 zIzI nψ= , where 

0I  is current amplitude and function )cos()( 1 zkzn ′=ψ  if n  is odd and 

)sin()( 1 zkzn ′=ψ  if n  is even. Current amplitude 0I  is defined by orthogonality 
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condition of zero approximation to RHS of Eq.(36) for the first approximation that 

after some algebra gives 

)()(
1 0

1
0 zEzdz

Z
I zn

h

h

ψ∫
−

=                                        (37) 

The quantity 1Z  has sense of input impedance of single vibrator – dipole feeding in 

the current maximum point, when )()( 00
0 zzvzEz −= δ  and 1)( 0 =znψ , and it is 

evaluated via formula  

( ) ( )nSiinDiZ
k

ππεω
221

1

−=
′
′

                                     (38) 

Here the functions ( )xSi  and ( )xDi  are defined by integrals 

∫∫
−==

xx

t

t
dtxiD

t

t
dtxSi

00

cos1
)(;

sin
)(                           (39) 

with ( )xSi  being the integral sine [38] and regular function ( )xDi  related to the 

integral cosine ( )xCi  and Euler constant C  ≈ 0.5772 as ( ) )(ln xCiCxxDi −+= . 

Substituting current distribution )(0 zI  along turned single vibrator- dipole 

into Eq.(31) gives for single wire T - scattering operator ),( zzt ′  of such vibrator- 

dipole a separable value defined by 

)()(
1

),(
4 1

2

zz
Z

zzt
ic

nn ′=′ ψψ
πω

                                  (40) 

The separability property of single wire T - scattering operator makes the Eqs.(33) 

and (34) for current distributions along two coupled linear wire antennas to be exactly 

resolved. One can write out result of this resolution in a form similar to the case of a 

single linear wire antenna putting )()( )(
0

)(
qn

q
q

q zIzI ψ=  where amplitudes )(
0

qI  of 

current distribution along two coupled linear wire antennas are given by 









+

−
= ∫ ∫

− −

h

h

h

h
znzn zEzdzazEzdz

Za
I )()()()(

1

1

1
2

0
22121

0
11

1
2
12

)1(
0 ψψ            (41) 

and 
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+

−
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− −

h

h

h

h
znzn zEzdzazEzdz

Za
I )()()()(

1

1

1
1

0
11122

0
22

1
2
12

)2(
0 ψψ            (42) 

Here the indices 1 and 2 are related to antennas 1 and 2, respectively, and integrations 

are performed along these two antennas. A specific coupling factor 11212 / ZZa −=  

where 12Z  is mutual impedance [37] of two vibrator - dipoles is defined by integral 

equality 

)(),()(
4 221022

1

2
2

111121 zzzGdz
z

kzdzaZ
i

n

h

h
n

h

h

ψψ
π
εω

∫∫
−−











∂
∂+′=

′
             (43) 

Transforming double integral in this equality RHS by the method [25-26], with 

applying part by part integration, leads to a working formula for coupling factor 

evaluation 

)(2)()( 0121
1

xfxfxfaZ
k

−+=
′
′

−+
εω

                                  (44) 

where a function )(xf  is expressed in terms of integral cosine and integral sine as 

)()()( xSiixCixf +=  and parameters ±x  and 0x  have a form 

h

b
nx

h

b
nx

2
;

4
11 02

2

ππ =













++±=±                                    (45) 
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Figure 2. Dependence of the real (solid line) and imaginary (dashed line) parts of 

the specific coupling factor 11212 / ZZa =−  of two half wavelength 2/2 1λ=h  

antennas versus normalized distance hb 2/  between antennas. 

 

An useful asymptotics for coupling factor 12a  at small distances b  between antennas 

reads  

1

1
02/12

/
1

Z

k

h

b
ia

hb

εωπ ′′
−−≈→                                        (46) 

where input impedance 1Z  of single vibrator – dipole is defined by Eq. (38). Fig.2 

represents the real and imaginary parts of the coupling factor 12a  versus the 

dimensionless distant hb 2/  between two half wavelength 2/2 1λ=h  vibrators.  

In the next section we apply the presented currents’ distributions along single 

tuned vibrator- dipole as well as along two coupled tuned vibrator – dipoles to the 

problem of antennas’ exciting by a biological object thermal radiation via the object 

temperature homogeneous component. 

 

Exciting single and coupled tuned receiving linear wire antennas by 

equilibrium thermal radiation  

According to the general theory [6] the electromagnetic thermal radiation of a 

heated absorbing body is created by a random electric volume current density 

)(rj src rr
 with the spatial correlation function spectral density given by 

)()()(
4

1
)()(

2
rrrrrjrj srcsrc ′−Θ′′=′∗ rrrrrr δδεω

π αββα                   (47) 

where )(rrΘ  denotes the body temperature multiplied by the Boltzmann constant. In 

this section we are interesting in effects of homogeneous component 0Θ  of the 

biological object temperature. In this case one obtains from Eqs. (5), (11) and (47) the 

following expression for the incident on antennas random electric field spatial 

correlation function spectral density 
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)(Im4)()( 0
02

00 rrG
c

rErE ′−Θ−=′∗ rrrr
αββα

ω
                       (48) 

that is a standard form [10] of equilibrium thermal radiation electric field spatial 

correlation function spectral density.  

Apply first the expression in Eq. (48) to the case of a single tuned vibrator-

dipole antenna exciting by a biological object thermal radiation via object 

temperature homogeneous component. Eq. (37) gives for the fluctuations’ spectral 

density 
2

0I  of current distribution along receiving antenna amplitude an equality 

)()()()(
1 00

2
1

2
0 zEzEzzzdzd

Z
I zznn

h

h

h

h

′′′′= ∗

−−
∫∫ ψψ                  (49) 

where one sees in the RHS integrand the auto- correlation function of random electric 

field inside antenna. Using for this auto- correlation function the expression in Eq. 

(48) and transforming the double integral by abovementioned method [25-26] leads 

to  

π
0

2
1

12
0

Re Θ
=

Z

Z
I                                                       (50) 

that is actually the Nyquist formula for thermal excitation in conductors [39]. 

Turn now to the problem of two coupled tuned vibrator-dipoles’ exciting by a 

biological object thermal radiation via object temperature homogeneous component. 

On base of Eqs. (41), (42) and (48) the fluctuations’ spectral density 
2)1(

0I  of 

current distribution amplitude along, e.g., the antenna 1 is given by relation 

( )
( ) )()()()(Re2

)()()()(1

1

2
0

1
0

212112

1
0

1
0

1111
2

12

2)1(
0

22
12

2
1

zEzEzzzdzda

zEzEzzzdzda

IaZ

zznn

h

h

h

h

zznn

h

h

h

h

∗

−−

∗

−−

′+

′′′+=

−

∫∫

∫∫

ψψ

ψψ       (51) 
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The first double integral in the RHS of this relation takes into account electric field 

auto-correlations along single antenna 1 and single antenna 2, as in the case of the 

Nyquist formula in Eq. (49) derivation, and was considered actually in [9]. In 

deference, the second double integral takes into account cross-correlation of electric 

field fluctuations along antenna 1 and antenna 2 and was missed in [9]. Proceeding 

evaluation of double integrals in the Eq. (51) RHS leads to the following result 

12
0

2
1

12)1(
0

Re
f

Z

Z
I

π
Θ

=                                           (52) 

where factor 12f  of equilibrium thermal radiation coherence between two coupled 

antennas has a real value and is defined by 

( ) 







−+

−
=

1

121
12

2
1222

12

12 Re

)(Re
Re21

1

1

Z

aZ
aa

a
f                           (53) 

A part of this factor, which accounting for the term 
2

121 a+  only in the Eq. (53) 

RHS square brackets, was obtained in [9] on a phenomenological level of 

consideration, that is in terms of coupled antenna 1 input impedance inpZ1  = 

)/( 1
2
121 ZZZ −  and mutual impedance 12Z . Asymptotics in Eq. (46) for coupling 

factor 12a  at small distances b  between antennas shows that factor in Eq. (53) has a 

limit 4/112 →f  as distant between antennas becomes much smaller their length.  

 

Exciting single and coupled tuned receiving linear wire antennas by 

thermal radiation from modeled local temperature inhomogeneity 

In the preceding section a problem was considered about single and coupled 

tuned vibrator-dipoles’ exciting by a biological object thermal radiation via object 

temperature )(rrΘ  homogeneous component 0Θ . One can relate to this temperature 

homogeneous component a random electric volume current density component 

)(0 rj src rr
 in Eq. (47) LHS. Similarly we can connect the object temperature local 

volume spatial variation )(rrΘδ with a corresponding local random electric volume 
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current density variation )(rj src rrδ . Supposition about statistical independence from 

)(0 rj src rr
 leads to the spatial correlation function spectral density for local variation 

)(rj src rrδ  in a form of Eq. (47), with replacing )(rrΘ  to )(rrΘδ  in the RHS of this 

equation that is  

)()()(
4

1
)()(

2
rrrrrjrj srcsrc ′−Θ′′=′∗ rrrrrr δδδεω

π
δδ αββα                 (54) 

Eqs. (5), (11) and (54) give expression for the incident on antennas random electric 

field )(0 rE rr
δ  spatial correlation function spectral density caused by local spatial 

variation of the object temperature 

)()()()(4)()( 111
0

1
0

12

3
00 rrrrGrrGrd

c
rErE rrrrrrrrr Θ′′−′−=′ ∗

′′
∗

∫ δεωδδ αβααβα  (55) 

Detailing the idea about local random electric volume current density variation one 

can split this variation into sum )()( rjrj srcsrc rrrr
∑=
α

αδδ  of three mutually 

perpendicular and statistically independent random currents (random dipoles) 

ααε δδ erjrj srcsrc ˆ)()( rrr
=  where αê  are the unit vectors along the zyx ,,  axes, 

respectively to .3,2,1=α  The random currents )(rj src r
αδ  satisfy the Eq. (54) 

evidently. Correspondingly the incident random electric field splits into sum 

)()( 00 rErE vrrr
∑=
γ

γδδ  of three statistically independent incident random electric 

fields defined by 

( ) βγγαβαγ δπωδ )ˆ()()(
4

)( 0
2

0 erjrrGrd
ic

rE src ′′−′= ∫
rrrrrr

                      (56) 

Physically the random electric field )(0 rE rr

γδ  is created by random electric current 

(dipole source) )(rj src rr

γδ .  

We have come up closely to our basic model of random electric dipole source 

inside a biological object oriented parallel to single (Fig. 3) or coupled (Fig. 1) tuned 
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linear wire antennas. In this model only the random electric field )(0 rEz
rr

δ  created by 

random electric current )(rj src
z ′&rrδ  is taken into account. We think the last random 

electric current as being confined inside a thin and finite cylindrical region, which is 

extended in limits 2/2/ zzzzz ∆+≤′≤∆−  along the Z ′-axes and defined by a 

 

 

Figure 3. Schematic showing of vibrator antenna in thermal radiation field of 

random electric dipole source ( )rj src
z ′rrδ  which is extended in limits 

2/2/ zzzzz ∆+≤′≤∆−  along the Z ′-axes and defined by a vector ⊥R
r

 in the 

11YX - plane (gray area) with length ⊥R  and azimuth angle ϕ .  

 

vector ⊥R
r

 in the 11YX - plane as, e.g., in the case of the single vibrator- dipole 

antenna (Fig.3). Integrating the random electric volume current density variation 

)(rj src
z ′&rrδ  over the cylindrical region cross- section leads to a total random current 

variation )(zI src
z ′δ  in chosen cross-section, with a longitudinal correlation function 

spectral density giving by  

)()(
4

1
)()(

2
zzz

z
zIzI src

z
src
z ′−Θ

∆
∆Ω′′=′ δδεω

π
δδ                        (57) 



ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N12, 2011 

 
 

26 

Here ∆Ω  is a volume of the random electric dipole source. 

One started actually to consider a problem of exciting single receiving linear 

wire antenna by thermal radiation from local temperature inhomogeneity. In the 

framework of the introduced random electric dipole source model, the z - component 

)(0 rEz
rδ  of the incident random electric field along single vibrator- dipole antenna 

(Fig. 3) is given according to Eqs. (11) and (56) by relation 

)(),()(
4 102

1

2
2

11
0 zIzzG

z
kzdzE

i
zz ′′















∂
∂+′′=

′
∫ δδ

π
εω

             (58) 

where a Green function ),( 10 zzG ′  is obtained from ),( 210 zzG  defined after Eq.(34) 

by replacing 2z  to z′and b  to ⊥R . The incident random electric field in Eq.(58) 

excites along single tuned vibrator- dipole receiving antenna a current distribution 

with random amplitude 0Iδ  given by Eq.(37), with replacing )(0 zEz  to )(0 zEzδ  in 

the RHS integrand. Thus one gets  
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Applying to the RHS of this equation the integration part by part with respect to 

variable 1z  , similarly with integral in Eq. (43), gives  
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For the case of tuned vibrator –dipole of length 2/2 1λnh =  equal to odd whole 

number n  of half wavelengths Eq. (60) is transformed as  
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where )(zR ′±  are defined by 222 )()( zhRzR ′+=′ ⊥± m  (see Fig.4). According to 

obtained equation the two spherical waves are propagated from a point z′  of random 

electric dipole source towards receiving vibrator-dipole ends. Bearing in mind the 

reciprocity between receiving and transmitting antennas one can say also that two 
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spherical waves are propagated from vibrator- dipole ends towards the random 

electric dipole source and interfere on the source area. Eqs. (57) and (61) enable us to 

write out for the fluctuations’ spectral density 
2

0Iδ  of current distribution along 

receiving antenna amplitude caused by random electric dipole source thermal 

radiation a following equality  
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A function )(zF in the RHS of this equality has a form of integral 
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where integrand )(zF  is defined by 

( )[ ])()(cos)()(2)()()( 1
22 zRzRkzAzAzAzAzF −+−+−+ −′++=          (64) 

with [ ] )(/)(exp)( 1 zRzRkzA ±±± ′′−= . Similarly to optics [36] the definitions in 

Eqs.(63) and (64) can be called the single linear wire receiving antenna interference 

functions for the cases of finite extended and point random electric dipole source, 

respectively. 

The spatial integral averaging in the RHS of Eq. (63) along random electric 

dipole source extension we perform using an approximate formula  
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where a function zzz /)(sin)( =Γ . This formula is derived by writing 

)/)(/()( zdzdazdazd ′′′=′  and approximate bringing the denominator zdzda ′′ /)(  

outside the integral in the middle pointz . Actually we needs spatial averaging the 

fast varying cosine term of )(zF  only that gives for )(zF an expression  
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As one sees the interference function )(zF  for finite extended random electric 

dipole source is different from such interference function )(zF  for point source on a  

 

 

Figure 4. (a) The normalized interference function versus normalized height 

hzzh /=  (from the 11YX  plane) of random electric dipole point source at 
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different values of the point source normalized seeming depths hRR h /, ⊥⊥ = , 

with neglecting object absorption: hR ,⊥  = 1 (curve 1), 1.5 (2), 2 (3), and 6 (4). (b) 

the normalized seeming depth hR ,⊥  versus HWHM of the curves like ones in the 

panel (a) is delivered by curve 1 and calculated by Eq.(67) is given by curve 2. 

 

Γ -factor that defines a spatial coherence degree of extended random electric dipole 

source. 

Our next task consists in study the interference function )(zF  extreme 

properties depending on random electric dipole source extension and D3  position 

defined by mentioned above coordinate z  and vector ⊥R
r

. In this case the coordinate 

z  gives height of random electric dipole source centre above ( 0≥z ) or under 

( 0≤z ) the single linear wire antenna 11,YX - plane (Fig. 3) while the vector ⊥R
r

 

characterizes D2  position of random electric dipole source centre projection on the 

11,YX -plane that can be characterized also by the vector ⊥R
r

 length ⊥R  and its 

azimuth angle ϕ  (see Fig. 3). The minimum value 0⊥R  of the vector ⊥R
r

 length 

corresponds to the azimuth angle 2/πϕ =  and gives us the real depth of random 

electric dipole source centre, with ⊥R  being a seeming depth of this source centre. 

Henceforth the aim of the single receiving antenna scanning along biological object 

boundary surface 01 =y  consists to get the random electric dipole source centre 

inside the 11,YX -plane, first, and to define the source centre real depth by, e.g., 

placing this centre on the 1Y - axes, second. We intend to show that interference 

function )(zF  extreme properties can be a physical base to realize such kind of 

single receiving antenna scanning strategy. 

The interference function )(zF  has extreme value – maximum at 0=z , at last. One 

can verify this statement easily in the simple case of point random electric dipole 
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source, with neglecting effect of absorption when interference function )(zF  has for  

small z  the Taylor expansion  

2
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z
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Here 2
0/4)0( RF =  is maximum value of )(zF , with 2/122

0 )( hRR += ⊥  being 

equal to )(zR±  at .0=z  The quantity 2/1z  is half width at half maximum (HWHM) 

of the Taylor expansion in Eq. (67). A constant α  in the RHS of the second Eq.(67)  

is defined as 2)3/(13 πα +=  for the half wavelength vibrator antenna.  

Eq.(67) shows that HWHM of interference function )(zF  can be used to 

determine the seeming depth ⊥R  of random electric dipole point source. Because the 

HWHM is experimentally measured quantity we study next the interference function 

 

Figure 5. The normalized seeming depth hR ,⊥  versus HWHM of the dependences 

of normalized interference function calculated by Eq.(66) in the case of point 

source but accounting for an absorption hk1′′  in the units of skdn 8/1λ  =    

2182.0×n : n = 1 (curve 2), 2 (3), and 3 (4). The reference curve 1 (no 

absorption) is the curve 1 in Fig.5(b).  
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)(zF  extreme points and their HWHM in details, with taking into account effects of 

absorption and random electric dipole source extension. 

Fig.4(a) presents calculated by Eq.(64) dependence of the normalized 

interference function )(2
hzFh  on normalized height hzzh /=  of random electric 

dipole point source at a set of the point source normalized seeming depths 

hRR h /⊥⊥ =  ranged from 1 up to 6 when the curves have only one peak and 

absorption is neglected. From this calculated curves we take HWHM and plot 

HWHM against the known normalized seeming depth hR⊥  (Fig.4(b), curve 1). The 

curve 2 in the Fig.4(b) plots HWHW according to the Taylor expansion in Eq. (67) 

that is the quantity hz /)( 2/1 . The Fig. 4 shows that HWHM of interference function 

growths monotonously with growing the random electric dipole point source seeming 

depth when effect of biological object absorption is neglected. The curve 2 in 

Fig.4(b) predicts substantially smaller value for HWHM at given hR⊥  compared with 

the curve 1 in Fig.4(b) since the Taylor expansion dealing with only the peak top of 

the curves in the Fig.5(a). In Fig. 5 we repeat the curve 1 from Fig.4(b) and test the 

role of absorption in the case of point source. The absorption is measured in the units 

of 2182.08/11 ×==′′ ndnhk skλ  where n = 1, 2, and 3. The units of absorption 

measurement are chosen, with taking into account that for tuned vibrator-dipole 

2/1 πnhk =′  and for the human head brain 4/7/1 =skdλ , according to 

Introduction. Fig.5 shows that the more absorption is the less HWHM corresponds to 

the given point source seeming depth. In another words, the maximum peak of 

interference function )(zF  at 0=z  becomes narrower with growing absorption. 

Figs.6(a,b) depict HWHM of interference function against the normalized seeming 

depth hR⊥  at a set of random electric dipole source normalized extensions hz /∆ , 



ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N12, 2011 

 
 

32 

 

 

 

Figure 6. The normalized seeming depth hR ,⊥  versus HWHM of the dependences 

of normalized interference function calculated by Eq.(66) with neglecting of 

absorption (a) and with absorption accounting (b) in the case of point source 

(curve 1) and extended source hz /∆  = 1 (curve 2), 1.5 (3), and 2 (4). The 

absorption is equal to 2182.08/11 ==′′ skdhk λ . The curves are enumerated by 

the figures in a manner that the lower is the curve the higher is its number. 
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with neglecting absorption, Fig.6(a), and accounting absorption, Fig.6(b). It is seen 

from the panels (a) and (b) of Fig.6 that the absorption leads only to an increase in the 

slope angle of a “bundle” of the curves with respect to the HWHM axis. From the 

other hand, comparison of Fig.5 and Figs.6 demonstrates that absorption and source 

extension make change in different manner the HWHM dependence on source centre 

seeming depth. As one can note, the maximum peak of interference function )(zF  at 

0=z  becomes wider with growing the source extension in both cases of neglecting 

and accounting absorption. In addition to noted the effects of absorption and source 

extension are more sensitive for relatively big and small source centre seeming 

depths, respectively. Fig.5 curves allow one as to determine the point source seeming 

depth at given absorption as Fig.6(b) curves permit one to get a source centre 

seeming depth, with knowing biological object absorption and the source extension. 

If in the last case the source extension is known approximately with some accuracy 

the source centre seeming depth is obtained also approximately with corresponding 

accuracy.  

Having described Fig.4(a), we mentioned that the normalized interference function 

curves have only peak when source normalized seeming depth ranged from 1 up to 6 

and absorption is neglected. Fig.7(a,b) shows that for smaller values of source 

normalized seeming depth the normalized interference function curves can have 

several peaks, with possibility for side peaks being not less the central peak (Fig.7, 

curve 4 has three equal peaks). The side peaks may be studied in manner similar to 

the central peak consideration. Nevertheless we will not study side peaks here. 

Figs.4, 5, and 6 show that one can actually get the random electric dipole 

source centre inside the 11,YX -plane of a single receiving linear wire antenna (Fig.3), 

via scanning this antenna along the 1Z - axis on the biological object boundary 

surface 1y  = 0 and defining the HWHM of antenna interference function )(zF  

maximum at 1z  = 0. As this takes place we obtain the source centre seeming depth 
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Figure 7. The normalized interference function versus normalized height of 

random electric dipole point source with neglecting object absorption at different 

relatively small values of the point source normalized seeming depths: (a) hR ,⊥  = 

0.1 (curve 1), 0.2 (2), 0.3 (3), and; (b) hR ,⊥  = 0.455 (curve 4), 0.8 (5), 1 (6), and 2 

(7). 
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⊥R , with knowing the object absorption and source extension. Now we intend to 

define the real depth 0⊥R  of the source centre in the centre of D2  position inside the 

11,YX -plane, via antenna scanning along the 1X -axis on biological object boundary 

surface.  

 

Figure 8. Schematic showing of the upper half space of the 11,YX - plane with 

antenna shifted from the origin point to the point with the shiftx  coordinate along 

the 1X  axis. The symbol (●) shows the centre of the random electric dipole 

extended source on the 11,YX -plane. Vector ⊥r
r  is a current value of the vector 

⊥R
r

 when the antenna has the coordinate shiftx .  

 

Fig.9 depicts schematically scanning the random electric dipole extended 

source with centre on the 11,YX -plane by shifting the single receiving linear wire 

antenna along 1X -axis to position with coordinate .0≤shiftx  The interference 

function )( shiftxF  of the shifted single antenna is obtained from Eq.(66) by setting 

0=z  and has a form 






















 ∆′
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with hh rrhkA ,0,010 /)exp( ′′−=  where 2/12
,,0 )1( += ⊥ hh rr . The quantity hr ,⊥  is 

function of shifted antenna position and given (Fig. 8) by relation  

( )2
,,

2
,0

2
, hxhshifthh RxRr ⊥⊥⊥ −+=                                    (69) 

where 0cos,, ≤−= ⊥⊥ ϕhhx RR , 2/0 πϕ ≤≤  is projection of vector hR ,⊥
r

 on the 

1X -axis. All quantities in Eqs.(68) and (69), having dimension of length, are 

normalized to antenna half length h . 

The interference function of the shifted single antenna in Eq.(68) has evidently 

maximum at hxshift Rx ,⊥=  where the scanning antenna is brought in nearest position 

to the random electric dipole extended source, with distant hr ,⊥  between source 

centre and antenna centre becoming equal to the real depth hR ,0⊥  of the source 

centre. The two quantities hxR ,⊥  and hR ,0⊥  are connected between them by relation 

2
,

2
,0

2
, hhhx RRR ⊥⊥⊥ =+ . Therefore one can get the real depth of the source centre 

hR ,0⊥ , provided one knows from scanning experiment the antenna position 

hxshift Rx ,⊥=  where antenna interference function has maximum. We have also 

possibility to determine the real depth of the source centre by study the maximum 

peak of interference function in Eq.(68). The Taylor expansion for small values of 

hxhshift Rx ,, ⊥−  gives a representation similar to one in Eq.(67) and written as  
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Here )( ,hxRF ⊥  is maximum value of )( ,hshiftxF . The quantity 2/1x  is HWHM of the 

Taylor expansion in Eq. (70) defined by  
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Figure 9. Dependence of the normalized interference function on a shift of the 

1X -position of antenna from the origin point:  solid lines numbered by the figures 

and dashed lines numbered by the same figures but with the stroke correspond to 

hR ,⊥  = 1, hz∆  = 0 and hR ,⊥  = 2, hz∆  = 2, respectively. Magnitude of the azimuth 

angle ϕ  is equal to 1º (curves 1, 1’), 30º (2, 2’), 60º (3, 3’), and 90º (4, 4’). 

 

where quantity 2/12
,0,00 )1( += ⊥ hh Rr  and function )(1 zΓ is defined according to 

z

z
z

z
z
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Eq. (71) shows that the HWHM 2/1x  is related to the real depth of the source centre 

hR ,0⊥  directly and becomes smaller with absorption growing. Bearing in mind an 

asymptotics 12/)( 2
1 zz −≈Γ  as 0→z , one can conclude also that the HWHM 2/1x  

increases with taking into account a small extension of the source.  
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Figure 10. Dependence of HWHM of interference function Eq. (68) on the azimuth 

angle ϕ : solid lines numbered by the figures and dashed lines numbered by the 

same figures but with the stroke correspond to hz∆  = 0 and  hz∆  = 2, respectively. 

Magnitude of hR ,⊥  is equal to hR ,⊥  = 1 (curves 1, 1’), 1.5 (2, 2’), and 2 (3, 3’). 

 

Fig.9 presents the normalized interference function from Eq.(68) versus to 

normalized shift hshiftx ,  of scanning along 1X -axis antenna,. with no absorption 

taking into account. Fig.9 shows that normalized interference function from Eq.(68) 

shift towards negative 1X -axis direction with decreasing azimuth angle ϕ  according 

to above position of the normalized interference  function maximum. Meanwhile the 

normalized interference function becomes wider with growing the azimuth angle ϕ , 

that calls for growing the real depth of the source centre, and with growing the source 

extension also. Fig.10 presents the HWHM of normalized interference function from 

Eq.(68) versus to the varied azimuth angle ϕ  at fixed the normalized seeming depth 

but for a set of source extension, with no absorption taking into account. Fig. 10 

shows again that the normalized interference function becomes wider with growing 

the source extension. Fig. 11 generalizes content of Fig.10 on the subject to take into  
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Figure 11. Dependence of HWHM of interference function Eq.(68) on azimuth 

angle ϕ  at hR ,⊥  = 1: hz∆  = 0 (solid curves), hk1′′  = 0 (curve 1), skd8/1λ (2), and 

skd8/2 1λ  (3); hk1′′  = skd8/1λ  (dashed curves), hz∆  = 1 (curve 2’), hz∆  = 2 

(curve 2”). 

 

account the absorption, showing that the normalized interference function from 

Eq.(68) becomes narrower with growing absorption and wider with growing the 

source extension. Fig.12 presents the final dependence of normalized real depth of 

centre of random electric dipole extended source versus the HWHM of normalized 

interference function from Eq. (68), with taking into account absorption. The curves 

in Fig.12 show a competition between effects of absorption and source extension that 

make the HWHM smaller and bigger, respectively. As a result of such competition it 

is seen a crossing, in particular, of  two curves (1 and 2”) in Fig. 12. 

Before going above  to study the maximum peak of interference function in 

Eq.(68), we had mentioned that one can get the real depth of the source centre if one 

knows from scanning experiment the antenna position on 1X -axis where antenna 

interference function has maximum. In this case the three points’ set consisting of 
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antenna centre origin position, the just mentioned shifted antenna position and the 

source centre position inside the 11,YX -plane (see Fig.8) form a rectangular triangle. 

 

Figure 12. Dependence of the normalized depth of the source position on the 

HWHM (Fig.11) at hR ,⊥  = 1: hz∆  = 0 (solid curves), hk1′′  = 0 (curve 1), 

skd8/1λ (2), and skd8/2 1λ  (3); hk1′′  = skd8/1λ  (dashed curves), hz∆  = 1 (curve 

2’), hz∆  = 2 (curve 2”). 

 

Let us note in order to generalize such kind forming a triangle that one can consider 

two positions of two single antennas 1 and 2 centers along 1X -axis of the ZYX ,, 11  

coordinate system (Fig. 13) when a many-side triangle is formed inside the 11,YX -

plane by centers of these two antennas and random electric dipole source centre 

projection on the 11,YX -plane. The lengths ⊥1R  and ⊥2R  of formed triangle two 

sides can be determined separately via scanning the antennas 1 and 2 along 1Z - axis 

on biological object boundary surface 01 =y  and defining the HWHM of these 

antennas’ interference functions )(1 zF  and )(2 zF  maximums at 0=z , in 

accordance with  described study the interference function in Eq.(66). After that one 

can determine the real depth 0⊥R  of random electric dipole source centre by 
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resolving the triangle , with knowing its two mentioned sides as two seeming depths 

of source centre from two antennas centers and knowing distant between antennas. A 

symmetrical position of random electric dipole source relatively antennas, which 

transforms the above many-side triangle into isosceles one, is especially interesting 

for the case when effects of antennas’ coupling are taking into account. This case of 

two coupled tuned receiving linear wire antennas’ exciting by the random electric 

dipole source is our next task. 

 

Figure 13. Schematic showing of two coupled antennas in thermal radiation field 

of local temperature inhomogeneity. 

 

In the framework of using random electric dipole source model the z - 

component )( 1
0 zEzδ  of the incident random electric field along as coupled vibrator-

dipole antenna 1 in Fig. 13 is given as along single vibrator-dipole antenna in Fig.3 

by Eq.(58). Analogous expression for z - component )( 2
0 zEzδ  of the incident 

random electric field along coupled vibrator-dipole antenna 2 in Fig. 13 is obtained 

from Eq.(58) by replacing 1z  to 2z . The incident random electric fields )( 1
0 zEzδ  

and )( 2
0 zEzδ  excite along two coupled antennas some current distributions with 
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random amplitudes )1(
0Iδ  and )2(

0Iδ  given by Eqs.(41) and (42), respectively, with 

replacing )( 1
0 zEz  to )( 1

0 zEzδ  and )( 2
0 zEz  to )( 2

0 zEzδ  in the RHS integrands. 

Writing now equations similar to Eqs.(59) and (60) and supposing the tuned vibrator-

dipoles to be of length equal to add whole number of half wavelengths lead us to 

generalization of Eq.(61) in the form 
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and  
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Here sums are taken over index µ  two values ± , with distances )(1 zR ′±  and 

)(2 zR ′±  being defined similar to the case of single antenna in Eq.(61) and related to 

antennas 1 and 2, respectively, in Fig. 13. According to Eqs.(73) and (74) the two 

spherical waves are propagated from a point z′ of random electric dipole source 

towards receiving vibrator-dipole 1 ends as well as two another spherical waves are 

propagated from the same  point of source towards receiving vibrator-dipole 2 ends. 

Bearing in mind the reciprocity between receiving and transmitting antennas one can 

say also that four spherical waves are propagated from vibrator- dipoles 1 and 2 ends  

towards the random electric dipole source and interfere on the source area. Eqs.(57) 

jointly with Eqs.(73) and (74) enables us to get for the fluctuations’ spectral densities 

2)2,1(
0Iδ  of current distributions’ along coupled receiving antennas 1 and 2 

amplitudes caused by random electric dipole source thermal radiation the  following 

equalities  
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which generalize Eq.(62) written for a single antenna. Functions )()( zF q  in the RHS 

of these equalities, with indices 2,1=q  related to coupled antennas 1 and 2, have 

form of integral averaging along random electric dipole source extension in Eq.(63), 

with integrands )()( zF q  being presented as 

)(2)()()( 12122
2

121
)1( zFazFazFzF ++=                              (76) 

and 

)(2)()()( 21121
2

122
)2( zFazFazFzF ++=                                (77) 

Functions )(zFq  here coincides in physical sense with interference functions for 

point random electric dipole source exciting a single antenna 1 or 2 and are defined 

accordingly to Eq.(64) by 

( )[ ])()(cos)()(2)()()( 1
22 zRzRkzAzAzAzAzF qqqqqqq −+−+−+ −′++=         (78) 

where [ ] )(/)(exp)( 1 zRzRkzA qqq ±±± ′′−= . While the functions in Eq.(78) we call 

the auto-interference functions of single antennas 1 and 2,  the functions )(12 zF  and 

)(21 zF  need being called the cross-interference functions of coupled antennas 

because the last two functions take into account interference between a couple of 

spherical waves (see Fig. 13), one of which propagates from the point of random 

electric dipole source towards a receiving vibrator-dipole 1 end and another 

propagates to a receiving vibrator-dipole 2 end, as it is confirmed by equations  

( )[ ]1212112
,

12 )()(cos)()()( ανµνµ
νµ

+−′= ∑
±=

zRzRkzAzAzF                      (78) 

and 
1212

)()( 1221 αα −→= zFzF where 12α  is phase of the coupling factor 12a  defined 

by )exp( 121212 αiaa = . The sum in the RHS of Eq.(78) is taken over both indices 

µ  and ν  two values ± , with including four terms. The written equations for the 

cross- interference functions of antennas include an addition shift 12α±  caused by 
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antennas coupling side by side with phase shift ( ))()( 121 zRzRk νµ −′  equal to paths 

differences of two spherical waves in the biological object medium.  

Consider dependence of antennas interference functions )()( zF q , defined in 

Eqs.(76) and (77) for the case of point random electric dipole source, on the antennas 

coupling factor 12a . We see this dependence in a simple form of scaling factors 

2
12a  and 122a  as well as in a complicate form of the addition phase shift in 

expressions for the cross-interference functions of coupled antennas. Nevertheless the 

complicate phase shift comes into )(12 zF  and )(21 zF  with opposite signs and hence 

transforms into a scale factor in the sum of these cross-interference functions 

( ) ( )[ ])()(cos)()(cos2)()( 12112
,

122112 zRzRkzAzAzFzF νµνµ
νµ

α −′=+ ∑
±=

    (79) 

Summing next Eqs.(76) and (77), with accounting Eq.(79), gives  

( )[ ]
( ) ( )[ ])()(cos)()(cos4

)()(1)()(

12112
,

1212

21
2

12
)2()1(

zRzRkzAzAa

zFzFazFzF

νµνµ
νµ

α −′+

++=+

∑
±=

          (80) 

Summing at last the basic Eqs. (75) defined the fluctuations’ spectral densities 

2)2,1(
0Iδ  and reminding definition of    functions )()( zF q  give us 

)(
4

1
1 )21(

2

2)2(
0

2)1(
0

22
12

2
1

2

1

zFIIaZ
k

+Θ∆Ω′′=




 +−








′
′

δεω
π

δδεω
   (81) 

with  

[ ])()(
1

)( )2()1(
2/

2/

)21( zFzFzd
z

zF
zz

zz

′+′′
∆

= ∫
∆+

∆−

+
                          (82) 

The obtained three Eqs.(80), (81) and (82) show that sum of the fluctuations’ spectral 

densities of current distributions’ along coupled receiving antennas 1 and 2 

amplitudes caused by random electric dipole source thermal radiation has dependence 
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on antennas coupling factor 12a  in a simple form of scaling factors 

22
12

2
12 1)1(

−
−+ aa  and ( ) 22

121212 1cos4
−

− aa α  only.  

Although the RHS of Eq.(81) has a simple dependence on antennas coupling 

factor, the RHS of Eq. (80) leaves some difficult for study via complicate structure of 

four term sum, with each term describing interference of a waves’ couple propagated 

from a point source towards different antennas’ ends. Therefore we return to general 

Eq.(78) for the cross-interference function of coupled antennas and consider a 

mentioned above  special case of symmetrical position of random electric dipole 

source relatively antennas(Fig. 13) when a many-side triangle, formed inside the 

11,YX -plane by centers of antennas and  random electric dipole source centre 

projection on the 11,YX -plane, becomes isosceles one. In this case of source 

symmetrical position we have relations )()( 21 zRzR µµ = , with index ±=µ , that 

simplifies Eq.(78) immediately as  

122112 cos)()()( αzFzFzF ==                                         (83) 

where )()()( 21 zFzFzF ==  and )(zF  is given by Eq. (64). The final physically 

transparent result consists in equations  

2

02
12

2),2(
0

2),1(
0

1

1
I

a
II δδδ

−
==                             (84) 

where 
2

0Iδ  is presented in Eq.(62). Thus in the special case of source 

symmetrical position relatively antennas the both cross-interference functions of 

coupled antennas become equal to auto- interference function of single antenna 

accurate to scaling factor 12cosα  as well as the fluctuations’ spectral densities of 

current distributions’ along coupled receiving antennas 1 and 2 amplitudes become 

equal to fluctuations’ spectral densities of current distributions’ along single antennas 

accurate to scaling factor 
2

121
−− a . Ultimately one can reduce the scanning problem 

of random electric dipole source via two coupled tuned receiving linear wire antennas 
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to considered already such scanning problem via a single antenna, provided one is 

able to place the scanning source into symmetrical position relatively antennas and 

move the antennas  1 and 2 together, not separately, along  Z -axes on biological 

boundary surface  01 =y  (Fig. 13). 

 

Conclusions 

Theory of electromagnetic wave multiple scattering by ensemble of dielectric 

and conductive bodies has been applied to study coupled receiving antennas. A basic 

exact system of Fredholm’s second kind integral equations for electric currents 

excited inside antennas is derived and written in terms of the electric field tensor T-

scattering operator of a single antenna, the electric field retarded Green tensor 

function of a background and the incident on antennas electric field.  In this 

equations’ system an antenna is a body with given complex dielectric permittivity on 

some frequency, and electric current excited inside the antenna means sum of volume 

conducting and displacement electric currents. The background medium can be 

inhomogeneous one with some complex dielectric permittivity. The kernels of 

derived integral equations’ system are not singular for the case of no overlapping 

antennas, although the background electric field Green tensor function is singular in 

the origin. Such kind of three - dimensional singularity has been met really at study 

the wave integral equation for electric field inside single antenna in the homogeneous 

background, by verifying consistence this integral equation with boundary conditions 

on the antenna surface. As was demonstrated, one has to take into account two sorts 

of the homogeneous background electric field Green tensor function strong 

singularity: (i) electric field Green tensor function decomposition into a delta Dirac 

function term and principal part, and (ii) rule to bring out the second derivative 

outside the three-dimensional singular integral.  

The derived integral equations’ system for electric currents excited inside 

coupled antennas has been applied to study near field coherent effects caused by 

thermal microwave radiation incident electric field distribution along single or two 
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coupled linear wire perfectly conducting receiving antennas in the form of thin 

vibrator- dipoles placed at heated biological object boundary surface and tuned to half 

wavelength in the object. After having been neglected wave interaction of antennas 

with biological object boundary surface and used asymptotic method of “big 

logarithm”, the T-scattering operator of single antenna in the form of tuned vibrator-

dipole has become a separable wire T- scattering operator that lead to analytic 

evaluating the local total currents on two coupled receiving antennas and got a 

dimensionless antennas’ coupling factor. Effects of homogeneous and local 

inhomogeneous biological object temperature components on receiving antennas 

have been considered. Homogeneous temperature component was treated as source 

for equilibrium thermal radiation with standard form of incident on receiving 

antennas electric field spatial correlation function. This treatment led to a generalized 

Nyquist  formula for currents’ fluctuations excited on coupled receiving vibrator- 

dipole antennas, with accounting the auto- correlation and cross- correlation functions 

of random electric field inside each antenna and on both antennas, respectively. More 

original results have been obtained at study effects of biological object temperature 

distribution local volume change in the model framework of random electric dipole 

source inside object absorption skin slab area, with dipole source being parallel to 

vibrator-dipole antennas parallel between themselves and placed on the object 

surface. In the case of single receiving vibrator-dipole antenna it was shown that two 

spherical waves are propagated from a point of random electric dipole source towards 

receiving vibrator-dipole ends. Bearing in mind the reciprocity between receiving and 

transmitting antennas one can say also that two spherical waves are propagated from 

vibrator- dipole ends towards the random electric dipole source and interfere on the 

source area. This physical interpretation led similarly with optics to single antenna 

auto-interference function. Extreme properties of single antenna auto-interference 

function depending on random electric dipole source extension and the source centre 

three-dimension position relatively receiving antenna on the biological object surface 

have been studied in details. It was shown, in particular, that the single antenna auto-

interference function has maximum at source centre near antenna equatorial plane, 
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with half width at half maximum (HWHM) becoming narrower and wider under 

biological object absorption and source extension growing, respectively. Ultimately a 

method of random electric dipole source scanning via single receiving vibrator- 

dipole antenna moving along the biological object surface was formulated. Two 

scanning most simple strategy was considered: (i) by defining via HWHM the two 

values of source centre seeming depth relatively two antenna positions with next 

evaluating the real depth of the source centre (many-side triangle strategy), and (ii) by 

getting a symmetrical position of source relatively two antenna positions that 

transforms the many-side triangle into a isosceles one (isosceles triangle strategy).  

In the case of two coupled receiving vibrator-dipole antennas 1 and 2, as was 

shown two spherical waves are propagated from a point of random electric dipole 

source towards receiving vibrator-dipole 1 ends as well as two another spherical 

waves are propagated from the same point of source towards receiving vibrator-

dipole 2 ends. Hence side by side with above single antennas 1 and 2 auto-

interference functions, a cross-interference function of  coupled  antennas 1 and 2 has 

been introduced. The cross-interference function includes a complicate dependence 

on antennas coupling factor phase. Nevertheless, in the special case of source 

symmetrical position relatively antennas the cross-interference function of coupled 

antennas become equal to auto- interference function of single antenna, accurate to 

scaling factor equal to antennas coupling factor phase cosine. At the same time the 

fluctuations’ spectral densities of current distributions’ along coupled receiving 

antennas 1 and 2 amplitudes become equal to fluctuations’ spectral densities of 

current distributions’ along single antennas, accurate to scaling factor in the simple 

algebraic form of antennas coupling factor. Ultimately, the scanning problem of 

random electric dipole source via two coupled tuned receiving linear wire antennas 

has been reduced to such scanning problem via a single antenna, provided one is able 

to place the scanning source into symmetrical position relatively antennas and move 

the antennas 1 and 2 together, not separately, along biological object boundary 

surface.  
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