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Abstract. A method is proposed that allows to largely overcome the diffraction limit, as 

well as noise and other interferences in radio imaging devices (including ground and 

space telescopes) of millimeter, terahertz and far infrared ranges of the electromagnetic 

radiation in conformity with problems of reconstruction of images of the observing 

objects (the density distribution of sources). The spatial (angular) resolution and 

precision of the distributions of the observing sources are significantly higher in 

comparison with existing radio imaging devices of the specified ranges. This article 

describes the mathematical methods used to solve these problems. The article focuses on 

the simplest problem of the simulating of the image formation with a subdiffraction 

resolution using a one-dimensional experimental model of single aperture telescope. It is 

described the named experimental model and the corresponding experimental setup, the 

main components of which are the source of the electromagnetic radiation with a 

wavelength of 1,2λ ≅ mm on the basis of the backward wave tube, the telescope imitator 

based on two paired Teflon lenses, the radiation detector in the form of optic-acoustic 

receiver (Golay cell) and two precision coordinate tables with the electrical drive that 

moves the telescope imitator and the Golay cell. Due to the said moving the work of the 
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telescope itself and the image being observed are imitated. The result of the modeling 

has revealed itself in the estimation of improvement of the spatial (angular) resolution of 

radio the imaging devices of the specified above ranges up to ~ 150 times. 

Key words: radioastronomy and radio imaging devices of terahertz range of 

electromagnetic radiation, ground and space telescopes, methods of improving the 

characteristics, including the angular resolution, of telescopes and radio imaging 

devices.  

 

Introduction  

The authors of the patent[1] have proposed the method permitting to largely 

overcome the diffraction limit as well as a noise and other interferences in radio imaging 

devices (including the ground and space telescopes) of millimeter, terahertz and far 

infrared ranges of the electromagnetic radiation in conformity with problems of the 

reconstruction of images of observed objects (the distribution of radiation sources 

density). The spatial (angular) resolution and sharpness of the getting distributions of 

sources are significantly higher in comparison with existing radio imaging devices of the 

specified ranges, to which the mentioned above method has not been applied. This 

means the single aperture radio imaging devices, and observed images means two-

dimensional.  

The distribution function of the radiation sources density is the solution of the 

integral equations of the first kind. The corresponding problems of finding the specified 

function are ill posed. The instability of ill-posed problems and the inaccurate 

information about the input data require the development of so-called regularizing 

algorithms[2]. The requirements for these algorithms increase when considering tasks, 

the exact solutions of which are functions with a complex structure (tears, corner points, 

etc.). To clarify the nature of the sought solution allows the use of prior information of 

various types[3].  
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The distribution function of the density of the sources is obviously a function with 

multi-scale structure due to the different brightness and contrast of images. This 

circumstance gives the rise to the presence of singularities in solution of problem 

(unsmoothed unknown function).  

The traditional methods give “smoothing” of the solution in the vicinity of 

singularities of the unknown function (blurred solution), the greater, the greater 

inaccuracy of input data δ  (this error is determined by the distortion of an optical 

system, error of the measuring system, as well as the presence of noise of different 

origin). The total distortion of the sought solution may be unacceptable even for 

moderate levels of error input data δ .  

However, in a wide range of applied problems there is a priority information about 

the solution, use which, when building the corresponding methods, can significantly 

improve the quality of approximate solutions[4, 5]. 

To do this, in the development of a regularization algorithm, it is necessary to use 

the methods of selection of approximations, ensuring convergence of the approximate 

solution to the exact one together with the derivative at the plots of the corresponding 

smoothness. Indeed, the visual nature of the change curve at a given point is defined by 

a coordinate and a direction of a tangent. Therefore, bringing on smooth areas, not only 

the decision itself, but also its derivative, it is possible to improve the quality of the 

approximations. 

This article describes the simulation results of the proposed method of reconstruction 

of the distribution function of density of sources on the experimental one-dimensional 

model (the imitator) of single aperture telescope of millimeter range (λ ≅ 1.2 mm). 

Methods of solving the considered problems 

Consider the main features of the proposed algorithms and their differences from 

traditional methods of regularization.  

Imagine the task in the operator form:  
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=Au f          (1) 

Here A is the integral operator of the 1st kind,  f - the right side (the result of 

measurement), u - is the desired solution. 

If the right part f is known not exactly, but with some error δ  ( δ δ− <f f ,  ⋅  - the 

norm in functional space ∈,F f F ), the approximate solutions δu , some that 

δ δ δ− <Au f  can be arbitrarily hard to distinguish from each other when  δ  is 

arbitrarily small. 

The vast majority of regularizing algorithms of solution of the problem (1), 

traditionally based in one form or another[2, 6] for minimization of the functional 

( )α α= − + ΩM Au f u )          (2) 

At the same time Ω - is the so-called stabilizer and α  - regularization parameter. 

The stabilizer is introduced in order to ensure the stability of the resulting 

approximations to small changes off since solving the problem of minimizing the 

functional −min Au f  does not possess the property of stability. 

In equation (2) one may see the cause of the above smoothing (blurring) of the 

solution. Such smoothing makes use of a completely continuous operator A in 

functional Mα  . 

To find the distribution function of sources in the present project it is proposed to 

use ideas of works[5-7]. The main difference is represented in these works, regarding 

algorithms and traditional methods, is that instead of (2) a variational problem of finding 

the minimum variation of the sought solution (or its derivatives) is introducing:  

 ( )′ ′′min , , ,...L u u u        (3) 

After this the ratio δ δ δ− <Au f  is considered as an additional condition, along with 

other conditions resulting from a priori information about the decision and recorded in 

the form of linear constraints on the desired solution.  
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The variation of function characterizes the differentiability properties of this 

function, and the differential operator is unbounded and, therefore, may have a 

continuous inverse operator, that gives the opportunity to build sustainable solutions that 

preserve the properties of smoothness of the required function. The solution of the 

problem (3) does not require the introduction of "stabilizers" (it is possible to prove that 

the functionality ( )′ ′′, , ,...L u u u is known as a "stabilizer"), and also allows to refuse from 

the concept of the regularization parameter α . 

The proposed method of solution is as follows.  

Consider the integral equation 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
Ω

= =

∈Ω ∈Ω

∫
,

, , , , , ,

, , , , , .

x y

Au G x y s t u x y dxdy f s t

x y x y s t s t      (4) 

The corresponding transformation of the density distribution of sources (unknown 

function ( ),u x y ) to the measured value ( ),f s t  (the image). In (4): ( ),x yΩ  - the scope 

of ( ),u x y ; ( ),s tΩ - the scope of ( ),f s t . 

Let the known measurement error δ δ− ≤:
F

Au f
 

due to the properties of 

measuring instruments, and diffraction effects, as well as "noise". Here −
F

Au f is 

marked the norm in the function space ( )( )Ω ∈, ,F s t f F . 

As the desired function u deals with the solution of the variational problem 

 
( ) ( ) ( )( )

δ
Ω

− <
=

,
, argmin .

x y
Au f

u x y L u
       (5) 

  

In the formula (5)
 ( ) ( )Ω ,x y
L u  is a variation ( ),u x y or its derivative. The problem (5) 

is solved under additional constraints on the desired function, which follow from a priori 

information about this feature. For example, the obvious is the requirement of 

nonnegativity of the solution ≥0u .  
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The attraction of a priori information clarifies the nature of the required solution and 

in some cases, can significantly improve the accuracy of the approximations.  Therefore, 

the more relevant methods is taken into account the available a priori information, the 

generally higher quality of the obtained approximate solutions.  

Thus, the algorithm for the approximate solution of operator equation (4) is reduced 

to the solution of problem (5) under additional constraints relevant a priori information 

of various types and recorded in the form of linear conditions (inequalities) on the 

functionals of the desired solution. 

In the numerical realization of the proposed method of reconstruction of distribution 

of density of sources conducted sampling two-dimensional fields ( )Ω ,i jx y and 

( )Ω ,n ms t .  

In the simplest case where ( ) ( )Ω ,x y
L u  in (5) denotes the variation of function ( ),u x y  

minimized functionality in a discrete area ( )Ω ,i jx y is written in the form:  

   
| |1 1

, 1 , 1, ,
1 1 1 1

( ) .
y yx xN NN N

i j i j i j i j
i j i j

L u u u u u
− −

+ +
= − = −

= − + −∑∑ ∑∑
   (6) 

The inequality δ− ≤
F

Au f
 

makes sense limits and with the requirements of non-

negativity of the sought solution (≥0u ) as follows: 

 

| 11

, , , , , ,
1

1 11

max , 0.
yx NN

n m i j n m i j i j i j
n N

i jm M

p u q x y uδ
−−

≤ ≤ = =≤ ≤

− ∆ ∆ ≤ ≥∑ ∑
    (7) 

In the formula (7) the above symbols are introduced: 

 ( )=, ,n m n mp f s t ; ( )=, , , , , , .n m i j n m i jq G s t x y  

Thus, the solution of the original problem for the equation (4) is approximated by the 

solution of the discrete problem (6), (7). 

 Note in concluding this section that, in practice, view the hardware features specific 

experiment (the kernel of equation (4)) is rarely known with sufficient degree of 
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accuracy. Therefore, in the general case, the search for the required distribution of 

sources according to the observation is reduced to the solution of two problems: 

1. Determining the response function of the system and 

2. Proper reconstruction of the distribution function of the density of sources. 

To address the first of the specified tasks approaches and algorithms are described 

in[7]. The ways of solving the problem (4) are based, as already mentioned, on the 

papers[5-7]. 

The formulation of the one-dimensional problem 

The simplified one-dimensional diagram of the experiment is presented at Fig. 1.  

Let the desired density of the distribution of radiation sources is ( ) ( )∈, ,u x x a b . 

Let the center of telescope imitator is at the point 0x′ =  (Fig.1). The image 

( ) ( )∈, ,f s s c d  of observed object is formed on the line of detectors s. The equation 

linking the density of sources and their images on the detector line, written in the form: 

  ( ) ( ) ( ) ( )= ∈∫ , , , .
b

a

G x s u x dx f s s c d
        

(8) 

 

   

        Fig.1. The simplified one-dimensional diagram of the experiment. 

Thus, the problem of finding the function ( )u x is reduced to the solution of the 

integral equation (8) of the first kind. Following the remarks at the end of the previous 
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section, we first need to define a function ( ),G x s . The kernel of integral operator 

( ),G x s
 

in equation (8) having the sense of the instrumental function of the 

experimental setup is determined as follows[7] :  

  ( ) ( ) ( ) ( )δ≡ − =∫, , , .
b

a

G x s G z s x z dz f x s
      (9)

 

Formally, the relation (9) determines the response of the “optical” and measurement 

system (in our case – series (line) of detectors) (see ahead) to a point source of unit 

power (i.e. ( )δ =∫ 1
b

a

x dx ). The equality (9) indicates the method how to determine the 

kernel of the integral equation  (8)  being   the  hardware feature of the one-dimensional 

experiment. That is, in 

order to build ( ),G x s , one must measure the signal ( ),f x s  at each point 

( )∈ ,s c d  from the radiation delta-source at each point ( )∈ ,x a b .  

It is important to note that the function ( ),G x s
 

is defined by the “optical” system, 

so and by measuring (recording) device.  

For the numerical solution of equation (8) it is necessary to perform discretization of 

the problem. It is introducing two discrete grid: { } { }
=

= = =1 21
, ,...,

x

x

N

j Nj
x a x x x b  and 

grid { } { }=
= = =1 21

, ,...,
N

n Nn
s c s s s d . Using such discrete grids in some way 

approximated the density of sources ( ) ( )∼au s u s  and the readings of the detectors 

( ) ( )∼af s f s  and also the kernel ( ) ( ), ,aG x s G x s∼ of equation (8).  

The function values ( ),aG x s
 

at the nodal points of the two-dimensional area 

( )Ω ,a j nx s  are obtaining by menace of the measuring the signal from a point source, 
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located at the point jx  by detector located at the point ns  for all values j, n. The 

function values ( ),aG x s  at intermediate points of the region ( ),a x sΩ can be obtained, 

for example, using bilinear interpolation. 

The density of sources ( ( ) ( )∼au s u s ) and the readings of the detectors 

( ( ) ( )∼af s f s ), as well as the kernel ( ) ( ), ,aG x s G x s∼ of the equation (8) have to be 

approximated in some way on said above grids. The function values ( ),aG x s
 

at the 

nodal points of the two-dimensional area ( )Ω ,a j nx s
 

are obtaining by measuring the 

signal from a point source at point jx  by the detector located at point ns  for all indexes j 

and n. The function values ( ),aG x s
 

at intermediate points of the region can 

( ),a x sΩ
 

be obtained, for example, using bilinear interpolation.  

The discrete analogue of problem (5) in the one-dimensional case is written plainly: 

  
|

1
2

( )
xN

i i
i

L u u u −
=

= −∑
 

with the restrictions: 

  
|

,
1

1

max , 0.
xN

n j n j j j
n N

j

p u q x uδ
≤ ≤ =

− ∆ ≤ ≥∑
    

 

In (11):   ( )=n np f s ; ( )=, ,n j n jq G s x . 

Experimental setup for image formation f(s)  
A sketch of the setup is presented in Fig. 2. All components installed at the top row 

are part of the spectrometer of millimeter/submillimeter range of the Institute of General 

Physics named after A. M. Prokhorov of RAS[8]. The coordinate tables are produced by 

the Company "SPF Electric Drive"[9]. The coordinate tables drivers movement and the 

data acquisition are realizing by means of the universal software complex developed in 

IRE RAS[10].  

The selected scheme of the movement of the telescope imitator in relation to fixed 

(10)

 

(11)
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BWT and the movement of the Golay cell in relation to the telescope imitator in each 

position of the telescope imitator in the horizontal plane along lines perpendicular to the 

axis quasi-optical tract, during the measurements process, is presented in Fig.3. 

 

Fig.2. The sketch of experimental setup for the image formation modeling. 

It is clear that the described experimental setup does not give direct opportunities to 

obtain the core ( ),aG x s
 

of the equation because it uses one source and one detector. 

To simulate the set of sources it has proposed a mechanism to move the "telescope 

imitator", and to simulate a set of detector it has proposed a mechanism to move the 

detector. This method has several advantages over the actual use of multiple sources and 

multiple detectors. It is obvious, first, that this method can achieve the identity of 

radiation sources and detectors of the measuring system. Secondly, such a scheme of the 

experiment, of course, reduces the cost of the required equipment. 

Using the described setup, there were performed a series of experiments, the results 

of which made it possible to construct the response function of the recording apparatus 
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(the core of the equation ( ),aG x s ). The function ( ),aG x s  is shown in Fig. 4. 

 

Fig. 3. The scheme of reciprocal movements of parts of the experimental setup (in a 

plan view). 
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Fig. 4. The graph of the function ( ),aG x s
 

The simulation results 

To demonstrate the capabilities of the developed method of reconstruction of the field 

of sources (radiation sources density) there had been done a series of model calculations 

within the model of described above for one-dimensional experiment.  

As hardware function there was used the built kernel ( ),aG x s
 

of the integral 

equation (4) shown in Fig. 4. The field sources were asked in the form of two point 

sources located at different distances from each other within the diffraction blur of the 

recorded image. 

It is shown in Fig. 5 an example of calculation, when the distance between sources is 

1 mm, and the noise level is 2%. To the Fig. 5,a - the image recorded by the line of 

detectors, to the Fig.5,b the result of the reconstruction of the field of sources. The 

abscissa in these figures is the distance in mm. On the Fig. 5,a is the position of 
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detectors (line s in Fig.1), on the Fig.5,b is the position of sources (line x in Fig. 1). 

    

  Fig.5,a. The image obtained using the line of detectors. 
 

   
     mm   

  Fig.5,b. Exact (blue) and reconstructed field of sources (red). 

 

It is shown in Fig. 6 an example of calculation, when the distance between the sources 

is equal to 0.1mm, and the noise level is 2%. To the Fig. 6,a – the image recorded by the 

    Solutions δ = 2% 
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line of detectors, to the Fig. 6,b the result of the reconstruction of the field sources. The 

abscissa in these figures is the distance in mm.  

 

Fig. 6,a. The image obtained using the line of detectors 
 

 

Fig. 6,b. Exact (blue) and reconstructed field of sources (red). 
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Note, that the half-width of the diffraction blur in the above examples is of the order 

of 15mm. Thus, in the first example, the resolution of the two sources exceeds the 

blurred image by 15 times, and in the second one – by 150 times. For the selected noise 

level (2%) resolution 0.1 mm is a limit. With the increase of noise level up to 5-7% 

limiting resolution deteriorates approximately linearly. 

Conclusion 

It is important to note that the results obtained are first, the provisional nature and 

require further investigations, both in experimental plan and in terms of reconstruction 

algorithms of the field of sources. It is also important to say, that the transition to real 

two-dimensional images requires the use of more complex algorithms and significantly 

more powerful (including hybrid) computing hardware, in particular, due to the fact that 

hardware features in the two-dimensional case are a function of four variables and its 

determination requires a huge amount of calculations. 
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