
JOURNAL OF RADIO ELECTRONICS   (ZHURNAL RADIOELEKTRONIKI), ISSN 1684-1719, N12, 2017 

1 

 

UDC 519.218.5+519.246.5 

IDENTIFICATION OF THE POINT PROCESS INTENSITY SHAPE  

WITH THE PRECEDENTS MAXIMUM LIKELIHOOD DISTRIBUTIONS 

V. E. Antsiperov 

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 

Mokhovaya 11-7, Moscow 125009, Russia 

 

The paper is received on December 11, 2017 

 

Abstract: The work is devoted to the point process intensity shape identification by a 

given realization of process point occurrences. This identification is supposed to be 

the best fitting of the registered point-set to formal description of intensity shapes of 

previously observed processes − precedents. As a formal description of intensity 

shapes, it is suggested to use the parameters of the probabilistic mixture models. The 

main argument in favor of such a description is the fact, that for Poisson point 

processes, conditional, at a given number of points, distribution of the single point 

occurrence coincides, with an accuracy up to normalization, with the intensity. 

Because the Poisson model has proven itself in many applied problems, potentially 

approach proposed has the large amount of applications. Moreover, since for the 

mixture-like approximations exist effective algorithms for mixture parameters 

computation, the numerical realization of the approach seems to be the most reliable 

in many respects. The mentioned algorithms belong to the well-known VM (VB EM) 

family, they implement iterative (recursive) realization of the maximum likelihood 

approach. We also present and discuss VM-like identification algorithms in our 

paper. In this connection, explicit expressions are given for the point process intensity 

shape iterative identification. 

Key words:  point process intensity shape identification, formal shape description, 

inhomogeneous Poison point process, finite mixture models, machine learning, 

effective computational schemes, EM, VB EM, VM algorithms. 

 

 



JOURNAL OF RADIO ELECTRONICS   (ZHURNAL RADIOELEKTRONIKI), ISSN 1684-1719, N12, 2017 

2 

 

Introduction 

The main problem considered in the paper concerns the statistical inference 

about the shape of intensity of a point process, whose realization is given by a 

random set of discrete points [1]. It is assumed that these points occur in the state 

space 𝑆 − some subset of 𝑅𝐷 − the Euclidean space of dimension 𝐷 ≥  1. Usually, if 

𝐷 =  1, then points are implied as occurring along the time axis, if 𝐷 = 2, then points 

occur in some plane region, if 𝐷 = 3 – in the space, etc. However, for further 

purposes, the dimension 𝐷 of 𝑆 is not essential and it is not specified. Consequently, 

for the point locations the vector notation 𝑥⃗ ∈ 𝑆 is used, implying, if it is necessary, 

that 𝑥⃗ = (𝑥1, … , 𝑥𝐷)𝑇 represents the list of 𝐷 ordered numeric components. So, any 

realization of point processes comprises the random number of points 𝑛 = 𝑛(𝑆) ≥  1 

and the random locations {𝑥⃗1, … , 𝑥⃗𝑛}, 𝑥⃗𝑖 ∈ 𝑆  of the points. The set notation {…} 

signifies only that the ordering of the points 𝑥⃗𝑖 is irrelevant, but not that the points are 

necessarily distinct. Such unordered lists will be further referred to as the sets.     

One of the most important characteristics of any point process is its 

homogeneity / inhomogeneity. Usually this characteristic is defined in terms of the 

process intensity shape. The definition of intensity is briefly reviewed as follows: for 

any infinitely small neighborhood 𝑑𝑠 of 𝑥⃗ ∈ 𝑆 the intensity 𝜆(𝑥⃗) is the average 

number 〈𝑛(𝑑𝑠)〉 of points occurring in 𝑑𝑠 divided by its volume 𝑑𝑥⃗ = 𝑑𝑥1 ∙ … ∙ 𝑑𝑥𝐷:   

𝜆(𝑥⃗) = lim𝑑𝑥⃗→0
〈𝑛(𝑑𝑠)〉

𝑑𝑥⃗
  .     (1) 

When the intensity 𝜆(𝑥⃗) (1) is constant, the corresponding point process is said 

to be homogeneous, in the other case it is inhomogeneous. The inhomogeneous 

processes are, naturally, the most important ones for the intensity shape 

identification.   

It is easy to show that for orderly point processes [1] the value 𝜆(𝑥⃗)𝑑𝑥⃗ up to 

infinite smalls of a higher order gives the probability 𝑃(𝑛(𝑑𝑠) = 1) of occurring 

(exactly one) point in 𝑑𝑠. If, in addition, the occurrences of points in nonintersecting 

regions of 𝑆 are independent, an explicit expression can be obtained for the joint 

distribution density of realization (𝑛, {𝑥⃗1, … , 𝑥⃗𝑛}) [2]: 
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𝑝(𝑛, {𝑥⃗1, … , 𝑥⃗𝑛}) = lim
𝑑𝑥⃗1,…,𝑑𝑥⃗𝑛→0

𝑃(𝑛(𝑆)=𝑛,   𝑛(𝑑𝑠1)=1,… ,𝑛(𝑑𝑠𝑛)=1)

𝑑𝑥⃗1∙…∙𝑑𝑥⃗𝑛
=

= 𝜆(𝑥⃗1) ∙ … ∙ 𝜆(𝑥⃗𝑛) × exp (− ∫ 𝜆(𝑥⃗)𝑑𝑥⃗
𝑆

)
 .  (2) 

It is well-known, that any orderly point process with the independent property 

is, up to some technical refinements, necessarily Poisson process [2]. As for the 

refinements, they are important for rigorous mathematical analysis, in applications 

they practically always take place. So, assuming all refinements are satisfied, the 

Poisson process will be further considered as a model of the analyzed point process. 

To emphasize this fact, let's rewrite the distribution density (2) in the more familiar 

form: 

𝑝(𝑛, {𝑥⃗𝑖}|𝜆(𝑥⃗)) = 𝑝({𝑥⃗𝑖}|𝑛; 𝑝(𝑥⃗))𝒫(𝑛|Λ) ,

𝒫(𝑛|Λ) =
Λ𝑛

𝑛!
exp(−Λ) ,   Λ = ∫ 𝜆(𝑥⃗)𝑑𝑥⃗

𝑆
  ,

𝑝({𝑥⃗𝑖}|𝑛; 𝑝(𝑥⃗)) = 𝑛! ∏ 𝑝(𝑥⃗𝑖), 𝑝(𝑥⃗) = 𝜆(𝑥⃗) Λ  ,⁄𝑛
𝑖=1

  (3) 

where 𝒫(𝑛|Λ) is the standard Poisson distribution of random number of points 𝑛 with 

the parameter Λ – the fraction of process power on 𝑆, and 𝑝({𝑥⃗𝑖}|𝑛; 𝜆(𝑥⃗)) is a 

conditional distribution density of random locations of points {𝑥⃗1, … , 𝑥⃗𝑛} , when the 

process intensity is 𝜆(𝑥⃗). A couple of remarks should be made concerning (3). 

Firstly, if the bulk of the 𝜆(𝑥⃗) belongs to the state space 𝑆, we can spread the 

integration in Λ (3) to infinity and “forget” the exact form of 𝑆.  Secondly, the 

conditional distribution 𝑝({𝑥⃗𝑖}|𝑛; 𝜆(𝑥⃗)) has the same form as the order statistics of 𝑛 

independent, identically distributed random vectors on 𝑆 with the common 

probability density 𝑝(𝑥⃗). It follows from (3) and from these remarks that if the 

intensity function of a Poisson process is concentrated substantially on 𝑆, then it can 

be represented as the product of a factor Λ , characterizing the total power (norm) of 

the process, and the normalized probability distribution density 𝑝(𝑥⃗), which 

characterizes the randomness in locations of independent points in 𝑅𝐷: 𝜆(𝑥⃗) =

Λ𝑝(𝑥⃗). This observation will be a key point for further consideration.    

Although the discussed above Poisson process is a rather special case of 

general point processes – it is the maximally random and, consequently, has the 
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simplest structure – the number of Poisson process applications is huge [3] and 

continues to grow rapidly. It is because the Poisson process as a convenient and 

flexible model for analyzing both real systems and their simulations leads often to 

well-interpreted results. In this paper we also use the model of the inhomogeneous 

Poisson point process (PPP).   

History and modern trends in PPP intensity estimation  

As emphasized above (3), a complete statistical description of PPP can be 

achieved by specifying its intensity function. Intensity function, in turn, can be 

parameterized by the process power Λ = 𝑛̅ (intensity norm) and normalized density 

𝑝(𝑥⃗) (intensity form) (3). When application domain knowledge does not fully specify 

the intensity, it is necessary to estimate it from registered data.  

One of the first works dedicated to the analysis and estimation of PPP intensity 

was Cox paper [4]. It contains the systematic application of classic (frequentist) 

statistical methods to the problem. A few estimates of the Poisson process intensities, 

grouped intensities, etc. have been proposed in this regard. But it should be noted, 

that all problems were solved only for the homogeneous (stationary) Poisson process 

and, consequently, concern only Λ = 𝑛̅ estimations. The inhomogeneous case is 

analytically more complicated, therefore the estimation of non-constant, varying 

intensity (namely its shape) was not considered in the paper.  

The shift in the last quarter of the 20th century in the PPP intensity estimating 

towards semi-numerical and numerical methods was reviewed in [5]. The author 

discusses the model formulations, shape estimations, numerous applications. 

Maximum likelihood (ML) methods are emphasized as a basis for inference 

whenever possible. To find the maximum likelihood estimates, it is suggested, among 

other things, to use the iterative Newton-Raphson methods. In some cases, the use of 

EM (expectation-maximization) algorithms is also considered. 

The current state of intensity estimation is characterized by the trend of modern 

statistical methods to an algorithmic form. They increasingly correspond to the 

principles of the machine learning approach [6]. The good introduction in the subject 

is [2]. The author considers the parametric models of intensities and discusses 
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approaches to estimating their parameters depending on the type of problem – either 

it is related to the single process or to superposition of the processes. It is noted, that 

EM algorithm seems to be the most effective one in the superposition for Gaussian 

mixtures.  

In this paper, we also propose a certain variant of machine learning approach to 

evaluation of point process intensity shape. In accordance with the principles of 

machine learning, in our approach we propose to use data previously obtained in the 

learning process. It implies getting maximum correspondence (fitting) of the 

registered set of data (𝑛, {𝑥⃗𝑖}) to a given, formally described intensity shapes of 

previously observed processes –precedents.  

Maximum likelihood PPP intensity shape identification / estimation  

In this section, we present the general approach to identification of PPP 

intensity shape. The approach is based on establishing the maximum likelihood 

fitting of the recorded data to some intensity shape from a given set. We show that 

such an identification necessarily includes the step of estimating some intensity 

parameters. It is true regardless of whether we consider the registered process or 

precedents, i.e. regardless of the available a priori information. However, the problem 

of estimating parameters for precedents is usually more complex, because in this case 

a priori information is often poor. In the case of a registered process, when existing 

precedents provide some a priori information, estimating can be somewhat 

simplified, but due to the limited amount of data, it should be done more carefully. 

The nuances and differences in the intensity identification for these two cases are 

discussed in the next section.  

As mentioned above, the non-constant, strictly-positive intensity 𝜆(𝑥⃗) (1) 

completely determines PPP statistics. As is customary in the theory of statistical 

inferences based on models [7], we assume that each intensity belongs to some 

definite class of shapes, indexed by a symbol 𝑀 (shape model structure), and inside 

the class individual intensities are determined by the parameters 𝜃. Substantially the 

model 𝑀 defines an a priori probability distribution of parameters 𝒫(𝜃|𝑀). Some 
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parameters can be tightly related to the model − they have narrow marginal 

distributions 𝒫(𝜃𝑗|𝑀), others are weakly related − they have wide distributions, 

possibly not depending on 𝑀. As the parameters of the first type, we can mention 

some geometric characteristics − shape moments, mutual distances between shape 

components, etc., The second type of parameters can be associated with 

transformations common for all intensities − shifts, scaling, rotations, etc.      

So, let us consider the intensities belonging to some parametrized set 

{Λ𝑝(𝑥⃗|𝜃, 𝑀)}, where 𝑀 is the class label, parameter Λ denotes the process power 

(norm) and 𝑝(𝑥⃗|𝜃, 𝑀) is the positive normalized distribution density, depending on 

parameters 𝜃 from parameter space 𝑇 − subset of 𝑅Φ (vide supra). Recall that the 

bulk of 𝑝(𝑥⃗|𝜃, 𝑀) is assumed belonging to the state space 𝑆 for all 𝜃 ∈ 𝑇. In this 

regard, to further use of the maximum likelihood (ML) method, it is worth replacing 

the likelihood function 𝑝(𝑛, {𝑥⃗𝑖}|𝜆(∙)) (3) by its logarithm (log−likelihood):  

𝐿(𝑛, {𝑥⃗𝑖}|Λ, 𝜃, 𝑀) = ln (𝑝 (𝑛, {𝑥⃗𝑖}|Λ𝑝(𝑥⃗|𝜃⃗; 𝑀))) = 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) + 𝐿𝑃(𝑛|Λ) ,

𝐿𝑃(𝑛|Λ) = ln(𝒫(𝑛|Λ)) = 𝑛 ln(Λ) − Λ − ln(𝑛!) ,

𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) = ln (𝑝 ({𝑥⃗𝑖}|𝑛; 𝑝(𝑥⃗|𝜃⃗, 𝑀))) = ∑ ln (𝑝(𝑥⃗𝑖|𝜃, 𝑀))𝑛
𝑖=1 + ln(𝑛!) .

 (4)  

As it follows from (4), log−likelihood 𝐿(𝑛, {𝑥⃗𝑖}|Λ, 𝜃, 𝑀) splits into the sum of two 

functions – 𝐿𝑃(𝑛|Λ) which depends only on Λ and  𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) depending on 

(𝜃, 𝑀). Obviously, 𝐿𝑃(𝑛|Λ) does not say anything about the shape of the intensity. 

Thus, the focus of the problem under consideration is the reduced log−likelihood 

function 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) (4).  

Due to 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) (4) importance, it is desirable to define the function 

structure in more detail. In our case this means a refinement of the model for the 

distribution density 𝑝(𝑥⃗|𝜃⃗, 𝑀). Let us accept the finite mixture model [8]:  

𝑝(𝑥⃗|𝜃, 𝑀) =  ∑ 𝑤𝑀
𝑘 𝜌𝑘(𝑥⃗|𝜃, 𝑀)𝐺

𝑘=1  ,    (5) 
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where 𝐺 is the number of mixture components, weights {𝑤𝑀
𝑘 } are the probabilities 

that the point hits a certain component, component densities {𝜌𝑘(𝑥⃗|𝜃⃗, 𝑀)} are the 

conditional distributions of point location coordinates when the point belongs to the 

component 𝑘 = 1, … , 𝐺. As is known from the theory of statistical inference [8], 

working with mixtures (5) it is convenient to introduce the hidden (latent) integer 

random variable 𝑦 ∈ {1, … , 𝐺} − component indicator. Then, considering  {𝑤𝑀
𝑘 } as an 

indicator probability and 𝜌𝑘(𝑥⃗|𝜃; 𝑀) as а conditional distribution 𝜌(𝑥⃗|𝑦; 𝜃, 𝑀), we 

can tract (5) as marginal distribution of  𝑥⃗. Wherein, using the hidden variable 𝑦, we 

can rewrite 𝑝(𝑥⃗|𝜃, 𝑀) (5) in a more compact form:  

𝑝(𝑥⃗|𝜃; 𝑀) =
𝜌(𝑥⃗,𝑦|𝜃⃗⃗⃗,𝑀)

𝜌(𝑦|𝑥⃗;𝜃⃗⃗⃗,𝑀)
=

𝑤𝑀
𝑦

𝜌𝑦(𝑥⃗|𝜃⃗⃗⃗,𝑀)

𝜌(𝑦|𝑥⃗;𝜃⃗⃗⃗,𝑀)
 ,   (6) 

although this is achieved by introducing a rather complex for the computation a 

posteriori distribution 𝜌(𝑦|𝑥⃗; 𝜃, 𝑀). 

Substituting 𝑝(𝑥⃗|𝜃, 𝑀) (6) in (4), we get the following log−likelihood function 

𝐿𝑆({𝑥⃗1, … , 𝑥⃗𝑛}|𝑛; 𝜃) structure, defined by the model (5) and "uncovered" with the 

entered hidden variables: 

𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) = ∑ ln (
𝜌(𝑥⃗𝑖,𝑦𝑖|𝜃⃗⃗⃗,𝑀)

𝜌(𝑦𝑖|𝑥⃗𝑖;𝜃⃗⃗⃗,𝑀)
)𝑛

𝑖=1 + ln(𝑛!) = ln (𝑛! ∏
𝜌(𝑥⃗𝑖,𝑦𝑖|𝜃⃗⃗⃗,𝑀)

𝜌(𝑦𝑖|𝑥⃗𝑖;𝜃⃗⃗⃗,𝑀)

𝑛
𝑖=1 ) . (7) 

It is well-known, that maximum likelihood (ML) method as the method of 

fitting the registered data (𝑛, {𝑥⃗𝑖}) to any shape class 𝑀 was proposed by Fisher and 

consists in evaluating and maximizing with respect to 𝑀 of the marginal log-

likelihood function 𝐿((𝑛, {𝑥⃗𝑖}) |𝑀). We also take the ML paradigm as the basis of 

our approach. Hereof, one of the central problems of the approach is how to find the 

log-likelihood function, i.e. how to calculate it. Below we discuss the principal 

features of the log-likelihood function calculation, typical for machine learning and 

used in our approach.    

The marginal log-likelihood function 𝐿((𝑛, {𝑥⃗𝑖}) |𝑀), after a series of 

elementary transformations, can be written in the form:  
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𝐿((𝑛, {𝑥⃗𝑖}) |𝑀) = ln(𝑝(𝑛, {𝑥⃗𝑖}|𝑀)) = ln (
𝑝(𝑛,{𝑥⃗𝑖};Λ,𝜃⃗⃗⃗|𝑀)

𝑝(Λ,𝜃⃗⃗⃗|𝑛,{𝑥⃗𝑖};𝑀)
) = 

= ln (𝑝(𝑛, {𝑥⃗𝑖}|Λ, 𝜃, 𝑀)𝒫(Λ, 𝜃|𝑀)) − ln (𝑝(Λ, 𝜃|𝑛, {𝑥⃗𝑖}; 𝑀))
,  (8) 

where 𝒫(Λ, 𝜃|𝑀) is an a priori and 𝑝(Λ, 𝜃|𝑛, {𝑥⃗𝑖}; 𝑀) is a posteriori probability 

distribution of (Λ, 𝜃) for a given class 𝑀. Since, according to assumptions made 

above, Λ is independent of (𝜃; 𝑀) (and {𝑥⃗𝑖}) and 𝜃 is independent of 𝑛, the 

following simplification take place: 𝒫(Λ, 𝜃|𝑀) = 𝒫(Λ)𝒫(𝜃|𝑀) and 

𝑝(Λ, 𝜃|𝑛, {𝑥⃗𝑖}; 𝑀) = 𝑝(Λ|𝑛)𝑝(𝜃|{𝑥⃗𝑖}; 𝑀). Given these circumstances and using (4), 

we can rewrite (8) as: 

𝐿((𝑛, {𝑥⃗𝑖}) |𝑀) = 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) + ln (𝒫(𝜃|𝑀)) − ln (𝑝(𝜃|{𝑥⃗𝑖}; 𝑀)) + 

+𝐿𝑃(𝑛|Λ) + ln(𝒫(Λ)) − ln(𝑝(Λ|𝑛))
.  (9) 

Because the sum of the last three terms in (9) is independent of (𝜃, 𝑀) (it is 

ln(𝑝(𝑛)) and is even independent on Λ), the essential information about 𝑀 is 

contained, as noted, in 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) , in a priori 𝒫(𝜃|𝑀) and a 

posteriori 𝑝(𝜃|{𝑥⃗𝑖}; 𝑀) distributions of  𝜃. Since the constant terms do not affect the 

maximum points, the first three terms in (9) can be used in place of 𝐿((𝑛, {𝑥⃗𝑖}) |𝑀) 

and the function, maximized in the framework of the method proposed, takes the 

form:  

 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) = 𝐿𝑆𝜃({𝑥⃗𝑖}; 𝜃|𝑛; 𝑀) − ln (𝑝(𝜃|{𝑥⃗𝑖}; 𝑀)) ,

𝐿𝑆𝜃({𝑥⃗𝑖}; 𝜃|𝑛; 𝑀) = ln (𝑝({𝑥⃗𝑖}; 𝜃|𝑛; 𝑀)) = 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃, 𝑀) + ln (𝒫(𝜃|𝑀)) ,
  (10) 

where, according (7): 

𝑝({𝑥⃗𝑖}; 𝜃|𝑛; 𝑀) = 𝑛! ∏
𝜌(𝑥⃗𝑖,𝑦𝑖|𝜃⃗⃗⃗,𝑀)

𝜌(𝑦𝑖|𝑥⃗𝑖;𝜃⃗⃗⃗,𝑀)

𝑛
𝑖=1 𝒫(𝜃|𝑀)   (11) 

is the joint distribution of point coordinates {𝑥⃗𝑖} and parameters 𝜃 (for given number 

of points 𝑛 and model class 𝑀). Splitting 𝑝({𝑥⃗𝑖}, 𝜃|𝑛; 𝑀) (11) into a joint 

𝑝({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) and a posteriori 𝑝({𝑦𝑖}|{𝑥⃗𝑖}; 𝜃, 𝑀) distributions of hidden 
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variables {𝑦𝑖}, we obtain a representation, suitable for constructing variational 

methods (VM) of computing shortened log−likelihood function (10) [7]: 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) = 𝐿𝑆ℎ𝜃({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) − ln (𝑝({𝑦𝑖}; 𝜃|{𝑥⃗𝑖}; 𝑀)) ,

𝐿𝑆ℎ𝜃({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) = ln (𝑝({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀)) ,

𝑝({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) = 𝑛! ∏ 𝜌(𝑥⃗𝑖 , 𝑦𝑖|𝜃, 𝑀)𝑛
𝑖=1 𝒫(𝜃|𝑀),

𝑝({𝑦𝑖}; 𝜃|{𝑥⃗𝑖}; 𝑀) = ∏ 𝜌(𝑦𝑖|𝑥⃗𝑖; 𝜃, 𝑀)𝑛
𝑖=1 𝑝(𝜃|{𝑥⃗𝑖}; 𝑀).

   (12) 

Relations (12) give us the variable part of the marginal log-likelihood function 

(8), expressed through all the initial model distributions and, accordingly, providing a 

principal way of its calculation. However, the practical realization of direct 

calculations can be quite complicated, especially thanks to calculations of a posteriori 

𝑝({𝑦𝑖}; 𝜃|{𝑥⃗𝑖}; 𝑀). To avoid such complications, we use the following trick. Because 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) (12) does not depend on ({𝑦𝑖}; 𝜃), its averaging with respect to any 

arbitrary normalized density 𝑞({𝑦𝑖}; 𝜃) will not change it. But the averaging of the 

terms on the right-hand side of (12) after a small correction of the probabilities under 

the logarithms gives the free energy of the joint distribution 𝐹(𝑞(∙), … ) and the 

Kullback-Leibler divergence, denoted by 𝐷𝐾𝐿(𝑞(∙), 𝑝(∙ |{𝑥⃗𝑖}; 𝑀)) [9]: 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) = 𝐹(𝑞(∙), {𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) + 𝐷𝐾𝐿 (𝑞(∙); 𝑝({𝑦𝑖}; 𝜃|{𝑥⃗𝑖}; 𝑀)) ,

𝐹(𝑞(∙), … ) = ∑ … ∑ ∫ 𝑞({𝑦𝑖}; 𝜃)ln (
𝑝({𝑥⃗𝑖},{𝑦𝑖};𝜃⃗⃗⃗|𝑛;𝑀)

𝑞({𝑦𝑖};𝜃⃗⃗⃗)
) 𝑑𝜃

𝑇
𝐺
𝑦𝑛=1

𝐺
𝑦1=1 ,

𝐷𝐾𝐿(𝑞(∙), 𝑝(∙ |{𝑥⃗𝑖}; 𝑀)) = ∑ … ∑ ∫ 𝑞({𝑦𝑖}; 𝜃)ln (
𝑞({𝑦𝑖};𝜃⃗⃗⃗)

𝑝({𝑦𝑖};𝜃⃗⃗⃗|{𝑥⃗𝑖};𝑀)
) 𝑑𝜃

𝑇
𝐺
𝑦𝑛=1

𝐺
𝑦1=1 .

(13) 

Because Kullback-Leibler divergence 𝐷𝐾𝐿(𝑞(∙), 𝑝(∙ |{𝑥⃗𝑖}; 𝑀)) is nonnegative 

functional [9], the free energy integral 𝐹(𝑞(∙), … ) always forms a rigorous lower 

bound on the 𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) and coincides with it − reaches the maximum − in the 

only case when 𝑞({𝑦𝑖}; 𝜃) = 𝜌({𝑦𝑖}; 𝜃|{𝑥⃗𝑖}; 𝑀). Thus, the problem of calculating 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) (12) can be reduced to the variational problem: 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) = max
𝑞({𝑦𝑖};𝜃⃗⃗⃗)

𝐹(𝑞(∙), {𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀)  .   (14) 
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Historically the reduction of the log-likelihood calculation problem (12) to the 

variational problem (14) has given rise to the development of several effective 

computational algorithms. Like in the well-known variational Rayleigh-Ritz method, 

the main idea [7] here the following. Instead of looking for approximations to the 

exact solution (14), which in principle is known ( 𝜌({𝑦𝑖}; 𝜃|{𝑥⃗𝑖}; 𝑀) ), but requires 

intractable calculations, it makes sense from the beginning of the solution (14) to 

constraint the set of varying functions to the tractable ones, although they will give 

only an approximate solution. The most popular set of such tractable functions is the 

family of factorized over {𝑦𝑖}  and 𝜃 distributions 𝑞({𝑦𝑖}; 𝜃) = 𝑃{𝑦𝑖}𝒬(𝜃), where 

𝑃{𝑦𝑖} is discrete distribution on all possible sets {𝑦𝑖}, and 𝒬(𝜃) is a continuous 

distribution on 𝑇. Taking this constraint into account, the variational problem (14) 

can be written (considering (12)) in the form: 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) = max
𝒬(𝜃⃗⃗⃗)

max𝑃{𝑦𝑖}
𝐹(𝑃{𝑦𝑖}, 𝒬(𝜃), {𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) ,

𝐹(𝑃{𝑦𝑖}, 𝒬(𝜃), {𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀) =

= ∑ ∑ 𝑃𝑦𝑖
∫ 𝒬(𝜃)ln (𝜌(𝑥⃗𝑖 , 𝑦𝑖|𝜃, 𝑀)) 𝑑𝜃

𝑇
𝐺
𝑦𝑖=1

𝑛
𝑖=1 −

− ∫ 𝒬(𝜃)ln (
𝒬(𝜃⃗⃗⃗)

𝒫(𝜃⃗⃗⃗|𝑀)
) 𝑑𝜃

𝑇
− ∑ … ∑ 𝑃{𝑦𝑖}

𝐺
𝑦𝑛=1

𝐺
𝑦1=1 ln(𝑃{𝑦𝑖}) + ln(𝑛!)

  ,  (15) 

where 𝑃𝑦𝑖
, in contrast to 𝑃{𝑦𝑖}, means the marginal distribution of 𝑃{𝑦𝑘} with respect 

to 𝑦𝑖 . The solution in the general form of the approximate variational problem (15) 

can be found in two steps using, for example, the method of Lagrange multipliers 

(because of 𝑃{𝑦𝑖} and 𝒬(𝜃) unit norm constraints). 

First step. Taking the usual derivatives of 𝐹(𝑃{𝑦𝑖}, 𝒬(𝜃), … ) (15) with respect 

to 𝑃{𝑦𝑘} and equating them to zero: 

∑ ∫ 𝒬(𝜃)ln (𝜌(𝑥⃗𝑖 , 𝑦𝑖|𝜃, 𝑀)) 𝑑𝜃
𝑇

𝑛
𝑖=1 − ln(𝑃{𝑦𝑖}) − 1 − 𝜇𝐿 = 0  , (16) 

where 𝜇𝐿 is Lagrange multiplier, we get: 

𝑃{𝑦𝑖} =
1

𝑍𝑃
exp (∑ ∫ 𝒬(𝜃)ln (𝜌(𝑥⃗𝑖 , 𝑦𝑖|𝜃, 𝑀)) 𝑑𝜃

𝑇
𝑛
𝑖=1 )  ,  (17) 
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𝑍𝑃 = exp(1 + 𝜇𝐿) is the normalization constant, partition function for discrete 

distribution 𝑃{𝑦𝑖}. It immediately follows from (17) that 𝑃{𝑦𝑖} splits into a product of 

factors, each of which depends only on a certain (𝑥⃗𝑖 , 𝑦𝑖) pair. Normalizing each of 

these factors to unity, we obtain: 

𝑃{𝑦𝑖} = ∏ 𝜋𝑖𝑦𝑖

𝑛
𝑖=1

𝜋𝑖𝑘 =
exp(∫ 𝒬(𝜃⃗⃗⃗)ln(𝜌(𝑥⃗𝑖,𝑘|𝜃⃗⃗⃗,𝑀))𝑑𝜃⃗⃗⃗

𝑇
)

∑ exp(∫ 𝒬(𝜃⃗⃗⃗)ln(𝜌(𝑥⃗𝑖,𝑙|𝜃⃗⃗⃗,𝑀))𝑑𝜃⃗⃗⃗
𝑇

)𝐺
𝑙=1

  .   (18) 

Note that 𝜋𝑖𝑦𝑖
 (18) is the marginal distribution of 𝑃{𝑦𝑘} with respect to 𝑦𝑖 , i.e. it is 

exactly the same as 𝑃𝑦𝑖
. 

Second step. Substituting 𝑃𝑦𝑖
 by 𝜋𝑖𝑦𝑖

 in (15), taking then the functional 

derivative of 𝐹(𝑃{𝑦𝑖}, 𝒬(𝜃), … ) with respect to 𝒬(𝜃) and equating it to zero: 

∑ ∑ 𝜋𝑖𝑘ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀))𝐺
𝑘=1

𝑛
𝑖=1 − ln (

𝒬(𝜃⃗⃗⃗)

𝒫(𝜃⃗⃗⃗|𝑀)
) − 1 − 𝜈𝐿 = 0  ,  (19) 

where 𝜈𝐿 is Lagrange multiplier, we get: 

𝒬(𝜃) =
1

𝑍𝑄
𝑛! exp (∑ ∑ 𝜋𝑖𝑘ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀))𝐺

𝑘=1
𝑛
𝑖=1 ) 𝒫(𝜃|𝑀)  , (20) 

𝑍𝑄 = exp(1 + 𝜈𝐿) 𝑛!⁄  is the normalization constant, partition function for continuous 

distribution 𝒬(𝜃). In (20) the multiplier 𝑛! is introduced to represent 𝒬(𝜃) in the 

following general form (see (12)): 

𝒬(𝜃) =
1

𝑍𝑄
exp(∑ … ∑ 𝑃{𝑦𝑖}ln(𝑛! ∏ 𝜌(𝑥⃗𝑖 , 𝑦𝑖|𝜃, 𝑀)𝒫(𝜃|𝑀)𝑛

𝑖=1 )𝐺
𝑦𝑛=1

𝐺
𝑦1=1 ) =

=
1

𝑍𝑄
exp(∑ … ∑ 𝑃{𝑦𝑖}𝑝({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀)𝐺

𝑦𝑛=1
𝐺
𝑦1=1 )

  . (21) 

Combining expressions (18) and (20), we obtain the general form of the 

optimal solution of the variational problem (15) (marked by an asterisk (*) to 

distinguish them from other distributions): 

𝜋𝑖𝑘
(∗)

=
exp(∫ 𝒬(∗)(𝜃⃗⃗⃗)ln(𝜌(𝑥⃗𝑖,𝑘|𝜃⃗⃗⃗,𝑀))𝑑𝜃⃗⃗⃗

𝑇
)

∑ exp(∫ 𝒬(∗)(𝜃⃗⃗⃗)ln(𝜌(𝑥⃗𝑖,𝑙|𝜃⃗⃗⃗,𝑀))𝑑𝜃⃗⃗⃗
𝑇

)𝐺
𝑙=1

𝒬(∗)(𝜃) =
1

𝑍𝑄
𝑛! exp (∑ ∑ 𝜋𝑖𝑘

(∗)
ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀))𝐺

𝑘=1
𝑛
𝑖=1 ) 𝒫(𝜃|𝑀)

  , (22) 
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where it is understood that 𝑃{𝑦𝑖}
(∗)

= ∏ 𝜋𝑖𝑦𝑖

(∗)𝑛
𝑖=1  . Substituting probabilities 𝜋𝑖𝑦𝑖

(∗)
 

expressed in terms of 𝒬(∗)(𝜃) (22) into free energy expression (15), we obtain its 

maximum value, that gives, as noted above, the approximation (from below) of the 

shortened log−likelihood function 𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) (12): 

𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) = 𝐹 (𝑃{𝑦𝑖}
(∗)

, 𝒬(∗)(𝜃⃗), … ) =

= ln (𝑛! ∏ [∑ exp {∫ 𝒬(∗)(𝜃)ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀)) 𝑑𝜃
𝑇

}𝐺
𝑘=1 ]𝑛

𝑖=1 ) −

−𝐷𝐾𝐿 (𝒬(∗)(𝜃), 𝒫(𝜃|𝑀))

  .  (23) 

As it follows from (23), the approximation obtained is completely determined 

by a posteriori parameters distribution 𝒬(∗)(𝜃). The latter, in turn, is the randomized 

estimate of the parameters 𝜃. Thus, the statement made in the beginning of the 

section, that intensity shape identification necessarily includes the step of estimating 

some intensity parameters, can be considered completely proven. Moreover, 

expression (23) clearly shows how parameters estimation should use a priory and a 

posteriori information to optimize the intensity identification procedure. Indeed, for 

narrow distributions 𝒬(∗)(𝜃) with a maximum in 𝜃(∗), the first term on the right-hand 

side of (23) is approximately a reduced log−likelihood function 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃(∗), 𝑀) 

(4). The closer 𝜃(∗) to its ML estimate 𝜃𝑀𝐿, which depends only on the data 

realization (𝑛, {𝑥⃗1, … , 𝑥⃗𝑛}), the larger this term. Conversely, the second term in (23) 

will be larger (divergence 𝐷𝐾𝐿 (𝒬(∗)(𝜃), 𝒫(𝜃|𝑀)) will be less), when 𝒬(∗)(𝜃) is 

closer to 𝒫(𝜃|𝑀). Since we are looking for the maximum of sum of these two terms, 

we are looking for a compromise in the use of registered (𝑛, {𝑥⃗1, … , 𝑥⃗𝑛}) and a priory 

𝒫(𝜃|𝑀) data when evaluating parameters by 𝒬(∗)(𝜃). 

Computational PPP intensity shape identification / estimation 

As follows from the preceding section, the problem of the ML PPP intensity 

shape identification by the registered data set (𝑛, {𝑥⃗𝑖}) consists in choosing the class 

𝑀(∗) which corresponds to the maximum free energy  𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) (23):  
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𝑀(∗) = 𝑎𝑟𝑔 max𝑀 𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀)  .     (24) 

Assuming that the number of classes 𝑀 is not very large − in the case of a registered 

process it is not more than the number of available precedents, and in the case of a 

new precedent there are only a few model assumptions about it, we will assume that 

the main volume of calculations associated with (24) is in the calculation of the 

𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) values, but not in the comparing them with each other (sorting the 

calculated set of values). Thus, concerning the computational problems within the 

framework of the method under discussion, one should pay attention to the 

calculations of 𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) (23), which, as noted above, imply an estimation of 

the class 𝑀 parameters 𝜃. After that the choice (24) of the most likelihood class 𝑀 

corresponding 𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) can be made by means of known discrete 

maximization methods.  

So, returning to obtained in the previous section system of solutions (22), 

which provides calculations (23), let us note the following. Although the left-hand 

parts of the equations (22) are the optimal distributions in an explicit form, their 

right-hand parts are linked with the neighboring distributions. So, the system (22) is 

implicit and highly nonlinear with respect to 𝜋𝑖𝑘
(∗)

 and 𝒬(∗)(𝜃⃗). This is a serious 

problem to the analytical treatment, but it is extremely favorable for computing. 

Indeed, system (22) is ideal for iterative computations: starting, for example, with 

𝒬(0)(𝜃) = 𝒫(𝜃|𝑀), we can calculate by (23) 𝐹(0), after that find by (22) 𝜋𝑖𝑘
(1)

, with 

its help find next approximation 𝒬(1)(𝜃), etc.:  

𝜋𝑖𝑘
(𝑗)

=
exp(∫ 𝒬(𝑗−1)(𝜃⃗⃗⃗)ln(𝜌(𝑥⃗𝑖,𝑘|𝜃⃗⃗⃗,𝑀))𝑑𝜃⃗⃗⃗

𝑇
)

∑ exp(∫ 𝒬(𝑗−1)(𝜃⃗⃗⃗)ln(𝜌(𝑥⃗𝑖,𝑙|𝜃⃗⃗⃗,𝑀))𝑑𝜃⃗⃗⃗
𝑇

)𝐺
𝑙=1

,

𝒬(𝑗)(𝜃) =
1

𝑍𝑄
𝑛! exp (∑ ∑ 𝜋𝑖𝑘

(𝑗)
ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀))𝐺

𝑘=1
𝑛
𝑖=1 ) 𝒫(𝜃|𝑀),

𝐹(𝑗) = ln (𝑛! ∏ [∑ exp {∫ 𝒬(𝑗)(𝜃⃗)ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀)) 𝑑𝜃
𝑇

}𝐺
𝑘=1 ]𝑛

𝑖=1 ) −

−𝐷𝐾𝐿 (𝒬(𝑗)(𝜃), 𝒫(𝜃⃗|𝑀)) ,

 ,  (25) 
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not forgetting at each iteration to increment counter 𝑗 until 𝐹(𝑗) stabilizes at some 

level: |𝐹(𝑗) − 𝐹(𝑗−1)| < 𝜀 for given small 𝜀. 

The only technical problem for (25) computer implementation is the 

continuous nature of parameters 𝜃, which implies continuous number of 𝒬(𝑗)(𝜃) 

values, appearing in the corresponding integrals. However, this problem can be easily 

overcome if the distribution 𝒬(𝑗)(𝜃) depends on a finite number of parameters and so 

integrals of 𝒬(𝑗)(𝜃) in (25) can be expressed through these parameters. Let us note 

that this could be done from the very beginning if the free energy 𝐹(𝑞(∙), … ) (13) 

would be maximized (14) over a more narrowed distributions class of factorizable 

parametric functions. However, it is more convenient to have the general form of the 

solutions (22), since it can always be restricted to a desirable subclass of variable 

functions. As for the question of the best 𝒬(𝑗)(𝜃⃗) parameterization, the answer 

depends on the problem, on the relationship between the quantities of a priori and a 

posteriori data, on available computing resources, etc. Below, we consider two 

typical cases − the analysis of precedent which leads to formal description of its 

intensity shape, and the case of shape identification of some registered point process 

using formal descriptions of available precedents intensity shapes. 

The case of precedent analysis characterized by a poor a priori information, but 

the amount of a posteriori data is, in principal, not limited. Therefore, due to a 

posteriori data let 𝒬(𝑗)(𝜃) be a very narrow distribution within a maximum 𝜃(𝑗). In 

other words, let us take the class of parametric 𝒬(𝑗)(𝜃) as a family of Dirac 

𝛿−functions {𝛿(𝜃 − 𝜃(𝑗))} . It follows from (21) that 𝜃(𝑗) can be found as 

maximizing exponent function in 𝒬(𝑗)(𝜃): 

𝜃(𝑗) = max
𝜃⃗⃗⃗ (𝑄(𝜃, 𝜃(𝑗−1))) ,

𝑄(𝜃, 𝜃(𝑗−1)) = ∑ … ∑ 𝑃{𝑦𝑖}
(𝑗)

𝑝({𝑥⃗𝑖}, {𝑦𝑖}; 𝜃|𝑛; 𝑀)𝐺
𝑦𝑛=1

𝐺
𝑦1=1

 , (26) 

where the value  𝑄(𝜃, 𝜃(𝑗−1)), usually called as the Q-function, is the conditional 

expectation (with respect to the hidden variables {𝑦𝑖}) of the complete variables 
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({𝑥𝑖}, {𝑦𝑖}) and 𝜃 joint distribution logarithm. The second argument of Q-function is 

denoted as 𝜃(𝑗−1), because the distribution 𝑃{𝑦𝑖}
(𝑗)

of hidden variables as the product of 

𝜋𝑖𝑘
(𝑗)

−s depends exactly on 𝜃(𝑗−1). Indeed, substituting 𝒬(𝑗−1)(𝜃) = 𝛿(𝜃 − 𝜃(𝑗−1)) 

into the 𝜋𝑖𝑘
(𝑗)

 (25), we obtain  posterior  distribution of 𝑦𝑖   precisely for 𝜃(𝑗−1): 

𝜋𝑖𝑦𝑖

(𝑗)
=

𝜌(𝑥⃗𝑖,𝑦𝑖|𝜃⃗⃗⃗(𝑗−1),𝑀)

∑ 𝜌(𝑥⃗𝑖,𝑙|𝜃⃗⃗⃗(𝑗−1),𝑀)𝐺
𝑙=1

=
𝜌(𝑥⃗𝑖,𝑦𝑖|𝜃⃗⃗⃗(𝑗−1),𝑀)

𝜌(𝑥⃗𝑖|𝜃⃗⃗⃗(𝑗−1),𝑀)
= 𝜌(𝑦𝑖|𝑥⃗𝑖; 𝜃(𝑗−1), 𝑀)  .  (27) 

Combining expressions (26) and (27), we obtain the famous EM algorithm [10] for 

maximum a posterior (MAP) estimation of parameters 𝜃: 

𝐸:

𝑀:
  

𝑄(𝜃, 𝜃(𝑗−1)) = ln(𝑛!) + ∑ ∑ 𝜌(𝑘|𝑥⃗𝑖; 𝜃(𝑗−1), 𝑀)ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀))𝐺
𝑘=1

𝑛
𝑖=1 +

+ln (𝒫(𝜃|𝑀)) ;  

    𝜃(𝑗) = max
𝜃⃗⃗⃗ (𝑄(𝜃, 𝜃(𝑗−1))) ;          

. (28) 

If in 𝐸 (28) we neglect the term ln (𝒫(𝜃|𝑀)), whose maximum is smaller and 

wider in comparison with the maximum of preceding term, we obtain the 

corresponding (28) EM algorithm [10] for maximum likelihood (ML) estimation of 

parameters 𝜃: 

𝐸:

𝑀:

        

  𝑄(𝜃, 𝜃(𝑗−1)) = ln(𝑛!) + ∑ ∑ 𝜌(𝑘|𝑥⃗𝑖; 𝜃(𝑗−1), 𝑀)ln (𝜌(𝑥⃗𝑖 , 𝑘|𝜃, 𝑀))𝐺
𝑘=1

𝑛
𝑖=1

    𝜃(𝑗) = max
𝜃⃗⃗⃗ (𝑄(𝜃, 𝜃(𝑗−1)))          

 . (29) 

Let us note that in calculations (28) and (29) at step 𝐸 the constant ln(𝑛!) can 

be ignored, since it has no effect on finding the maximum point 𝜃(𝑗) at step 𝑀. 

Substituting 𝒬(𝑗)(𝜃) = 𝛿(𝜃 − 𝜃(𝑗)) into the 𝐹(𝑗) (25), we obtain free energy 

value at iteration 𝑗  (taking into account that Dirac 𝛿−function in numerical 

calculations is the Kronecker symbol 𝛿
𝜃⃗⃗⃗;𝜃⃗⃗⃗(𝑗) for which  𝒬(𝑗)(𝜃)ln (𝒬(𝑗)(𝜃)) = 0): 
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𝐹(𝑗) = ln(𝑛! ∏ [∑ 𝜌(𝑥⃗𝑖 , 𝑘|𝜃(𝑗), 𝑀)𝐺
𝑘=1 ]𝑛

𝑖=1 ) + ln (𝒫(𝜃(𝑗)|𝑀)) =

=  ln (𝑝({𝑥⃗𝑖}|𝑛; 𝜃(𝑗), 𝑀)) + ln (𝒫(𝜃(𝑗)|𝑀)) =  ln (𝑝({𝑥⃗𝑖}; 𝜃(𝑗)|𝑛; 𝑀))
 .  (30) 

Thus, for precedents the main calculation time is spent on computing of 𝐹(𝑗) 

(30), which is either the reduced log−likelihood function 𝐿𝑆({𝑥⃗𝑖}|𝑛; 𝜃(𝑗), 𝑀) =

ln (𝑝({𝑥⃗𝑖}|𝑛; 𝜃(𝑗), 𝑀)) (4), or its improved with ln (𝒫(𝜃(𝑗)|𝑀)) joint log-likelihood 

function 𝐿𝑆𝜃({𝑥⃗𝑖}; 𝜃(𝑗)|𝑛; 𝑀) = ln (𝑝({𝑥⃗𝑖}; 𝜃(𝑗)|𝑛; 𝑀)) (10), depending on whether 

we neglect or not the poor a priori information contained in the 𝒫(𝜃(𝑗)|𝑀). 

Corresponding to these two cases, the value of 𝜃(𝑗) is the ML estimate in EM 

algorithm (29) or the MAP estimate in EM algorithm (28). Similar results were 

presented earlier in [11] for the one-dimensional state space 𝑆. 

In the case of a registered process, which may be a variant of one of the 

available precedents, a priori uncertainty in the case of a correctly selected precedent, 

on the contrary, is small. In that case almost all parameters 𝜃 are well defined and 

only some of them need to be estimated. Let us note, that due to this simplification 

the estimation of unknown parameters can be made with more accuracy. 

Supposing, that the registered process belongs to the class 𝑀, let us construct 

an approximation of log-likelihood function for its realization (𝑛, {𝑥⃗1, … , 𝑥⃗𝑛}) − free 

energy 𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) (23) in which all parameters 𝜃, except for translation 𝑡 and 

scale 𝑠 (common for all intensity shape components) are set equal to the parameters 

of belonging to the same class existing precedent. In other words, consider the 

distribution density 𝑝(𝑥⃗|𝜃, 𝑀) (6), characterizing the form of the intensity of the 

registered process, as a given function depending on two parameters: 

𝑝(𝑥⃗|𝑡, 𝑠, 𝑀) = 𝑝𝑎𝑝𝑟(𝑠𝑥⃗ + 𝑡|𝑀)𝑠𝐷 =
𝜌(𝑠𝑥⃗+𝑡,𝑦|𝑀)𝑠𝐷

𝜌(𝑦|𝑠𝑥⃗+𝑡;𝑀)
 ,  (31) 

where 𝜌(𝑥⃗, 𝑦|𝑀) and 𝜌(𝑦|𝑥⃗; 𝑀) are known joint and a posteriori distribution of 

complete (𝑥⃗, 𝑦) and hidden 𝑦 variables of class 𝑀 precedent, exponent 𝐷 is the 

dimension of state space 𝑆.  
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It follows from (31), that the main computational problem concerning algorithm (25) 

−  problem of distribution 𝒬(𝑗)(𝜃) parameterization is reduced in case considered to 

the best parametrization of: 

𝒬(𝑗)(𝑡, 𝑠) =
1

𝑍𝑄
𝑛! exp (∑ ∑ 𝜋𝑖𝑘

(𝑗)
ln (𝜌(𝑠𝑥⃗𝑖 + 𝑡, 𝑘|𝑀))𝐺

𝑘=1
𝑛
𝑖=1 ) 𝑠𝑛𝐷𝒫(𝑡, 𝑠) , (32) 

where we emphasize that the a priori parameters distribution 𝒫(𝑡, 𝑠) does not depend 

on class 𝑀. 

To simplify the subsequent analytic solutions, let us assume, firstly, that for 

ln(𝜌(𝑥⃗, 𝑦|𝑀)) there is a good approximation quadratic in 𝑥⃗ (it holds exactly in the 

case of Gaussian mixtures): 

ln(𝜌(𝑥⃗, 𝑦|𝑀)) ≅ ln (𝜌(𝑐𝑦(𝑀), 𝑦|𝑀)) −
1

2
(𝑥⃗ − 𝑐𝑦(𝑀))𝑇𝐴𝑦(𝑀)(𝑥⃗ − 𝑐𝑦(𝑀)) .  (33) 

Secondly, let us assume that ln (𝑠𝑛𝐷𝒫(𝑡, 𝑠)) also permits a good quadratic 

approximation:  

ln (𝑠𝑛𝐷𝒫(𝑡, 𝑠)) ≅ ln (𝛽𝑛
𝑛𝐷𝒫(0⃗⃗, 𝛽𝑛)) −

1

2Δ2
𝑡2 −

1

2𝜎𝑛
2 (𝑠 − 𝛽𝑛)2 ,  (34) 

where 𝑡 and 𝑠 are considered as independent. In simpler terms, we assume that the 

distribution 𝑡 is Gaussian and the distribution 𝑠, for example, the gamma distribution, 

is well approximated by a Gaussian distribution. 

It is easy to conclude that under assumptions made 𝒬(𝑗)(𝑡, 𝑠) (32) takes the 

Gaussian form: 

𝒬(𝑗)(𝑡, 𝑠) =
√det(𝒜(𝑗)(𝑛;𝑀))

√(2𝜋)𝐷+1
(−

1

2
(𝜃 − 𝜃(𝑗))

𝑇
𝒜(𝑗)(𝑛; 𝑀)(𝜃⃗ − 𝜃(𝑗))) , (35) 

where 𝑡 and 𝑠 are combined into 𝐷 + 1 dimensional  vector 𝜃𝑇 = (𝑡1, … 𝑡𝐷 , 𝑠).  

The maximum point 𝜃(𝑗) and the matrix 𝒜(𝑗)(𝑛; 𝑀) in (35) can be found by 

twice differentiating ln (𝒬(𝑗)(𝑡, 𝑠)) (32) with respect to parameters (𝑡, 𝑠) and 

substituting into the result the approximations (33) and (34):  
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𝜃(𝑗) =  ℬ(𝑗)(𝑛; 𝑀)𝑑(𝑗)(𝑛; 𝑀) ;  ℬ(𝑗)(𝑛; 𝑀) =  [𝒜(𝑗)(𝑛; 𝑀)]
−1

,

𝒜(𝑗)(𝑛; 𝑀) = (
∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝐴𝑘(𝑀)𝐺

𝑘=1
𝑛
𝑖=1 +

1

Δ2
𝐸𝐷 ∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝐴𝑘(𝑀)𝑥⃗𝑖

𝐺
𝑘=1

𝑛
𝑖=1

∑ ∑ 𝜋𝑖𝑘
(𝑗)

𝑥⃗𝑖
𝑇

𝐴𝑘(𝑀)𝐺
𝑘=1

𝑛
𝑖=1 ∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝑥⃗𝑖

𝑇
𝐴𝑘(𝑀)𝑥⃗𝑖

𝐺
𝑘=1

𝑛
𝑖=1 +

1

𝜎𝑛
2

) ,

𝑑(𝑗)(𝑛; 𝑀) = (∑ ∑ 𝜋𝑖𝑘
(𝑗)

𝑐𝑘
𝑇(𝑀)𝐴𝑘(𝑀)𝐺

𝑘=1
𝑛
𝑖=1 ∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝑐𝑘

𝑇(𝑀)𝐴𝑘(𝑀)𝑥⃗𝑖
𝐺
𝑘=1

𝑛
𝑖=1 +

𝛽𝑛

𝜎𝑛
2)

𝑇

,

 

 (36) 

where 𝐸𝐷 denotes the unity matrix of dimension  𝐷.  

On the base of approximations (33), (34) and the resulting Gaussian parametrization 

of 𝒬(𝑗)(𝑡, 𝑠) (35), (36), one can find analytic expressions for corresponding integrals 

in the main algorithm (25): 

∫ 𝒬(𝑗)(𝑡, 𝑠)ln(𝜌(𝑠𝑥⃗ + 𝑡, 𝑦|𝑀)𝑠𝐷)𝑑𝑡𝑑𝑠
𝑇

= ln(𝜌(𝑠(𝑗)𝑥⃗ + 𝑡(𝑗), 𝑦|𝑀)𝑠(𝑗)𝐷) −

−
1

2
𝑇𝑟 ( ℬ(𝑗)(𝑛; 𝑀)𝒞(𝑥⃗, 𝑦, 𝑛; 𝑀)) +

1

𝑛
ln (𝒫(𝑡(𝑗), 𝑠(𝑗))) −

−
1

𝑛
∫ 𝒬(𝑗)(𝑡, 𝑠)ln (𝒫(𝑡, 𝑠)) 𝑑𝑡𝑑𝑠

𝑇

,  ℬ(𝑗)(𝑛; 𝑀) =  [𝒜(𝑗)(𝑛; 𝑀)]
−1

,

 

 

𝒞(𝑥⃗, 𝑦, 𝑛; 𝑀) = (
𝐴𝑦(𝑀) +

1

Δ2𝑛
𝐸𝐷 𝐴𝑦(𝑀)𝑥⃗

𝑥⃗𝑇𝐴𝑦(𝑀) 𝑥⃗𝑇𝐴𝑦(𝑀)𝑥⃗ +
1

𝜎𝑛
2𝑛

)  ,

𝐷𝐾𝐿 (𝒬(𝑗)(𝜃), 𝒫(𝜃|𝑀)) =
1

2
ln (det (𝒜(𝑗)(𝑛; 𝑀))) −

𝐷+1

2
ln(2𝜋𝑒) −

− ∫ 𝒬(𝑗)(𝑡, 𝑠)ln (𝒫(𝑡, 𝑠)) 𝑑𝑡𝑑𝑠
𝑇

.

 (37) 

Substituting expressions (37) in (25), we obtain 𝜋𝑖𝑘
(𝑗)

 and 𝐹(𝑗) in the free from 

integrals form: 

𝜋𝑖𝑘
(𝑗)

=
𝜌(𝑘|𝑠(𝑗−1)𝑥⃗𝑖+𝑡(𝑗−1);𝑀)exp(−

1

2
𝑇𝑟( ℬ(𝑗−1)(𝑛;𝑀)𝒞(𝑥⃗𝑖,𝑘,𝑛;𝑀)))

∑ 𝜌(𝑙|𝑠(𝑗−1)𝑥⃗𝑖+𝑡(𝑗−1);𝑀)exp(−
1

2
𝑇𝑟( ℬ(𝑗−1)(𝑛;𝑀)𝒞(𝑥⃗𝑖,𝑙,𝑛;𝑀)))𝐺

𝑙=1

,

,

𝐹(𝑗) = 𝐿𝑆𝜃({𝑥⃗𝑖}; 𝑡(𝑗), 𝑠(𝑗)|𝑛; 𝑀) −
1

2
ln (det (𝒜(𝑗)(𝑛; 𝑀))) +

𝐷+1

2
ln(2𝜋𝑒) +

+ln (∏ [∑ 𝜌(𝑘|𝑠(𝑗)𝑥⃗𝑖 + 𝑡(𝑗); 𝑀)exp (−
1

2
𝑇𝑟 ( ℬ(𝑗)(𝑛; 𝑀)𝒞(𝑥⃗𝑖 , 𝑘, 𝑛; 𝑀)))𝐺

𝑘=1 ]𝑛
𝑖=1 ) ,

 

(38) 
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where notation 𝐿𝑆𝜃({𝑥⃗𝑖}; 𝑡(𝑗), 𝑠(𝑗)|𝑛; 𝑀) (10) for ln (𝑝({𝑥⃗𝑖}; 𝑡(𝑗), 𝑠(𝑗)|𝑛; 𝑀)) is used. 

Collecting all the expressions (36), (37), (38) together, we obtain the 

realization of the iterative algorithm (25) for parameters (𝑡(∗), 𝑠(∗)) estimation and 

free energy 𝐹(∗)({𝑥⃗𝑖}|𝑛; 𝑀) calculation in the case of a registered process with 

available precedents in the following final form: 

Initialization: for the given class 𝑀 precedent and the number of 

registered process points 𝑛 calculate  

for all precedent components 𝑘 = 1, … , 𝐺 center vectors {𝑐𝑘}  and matrixes {𝐴𝑘} (33), 

for a priory (𝑡, 𝑠) distribution dispersion Δ2, 𝜎𝑛
2, and the expected 𝑠 value 𝛽𝑛 (34), 

for all 𝑛 registered point locations 𝑥⃗𝑖   and all precedent components matrixes {𝒞𝑖𝑘}: 

𝒞𝑖𝑘 = (
𝐴𝑘 +

1

Δ2𝑛
𝐸𝐷 𝐴𝑘𝑥⃗𝑖

𝑥⃗𝑖
𝑇𝐴𝑘 𝑥⃗𝑖

𝑇𝐴𝑘𝑥⃗𝑖 +
1

𝜎𝑛
2𝑛

) ,   (39) 

assuming 𝜋𝑖𝑘
(0)

=
1

𝐺
  for all  𝑖 = 1, … , 𝑛 and all 𝑘 = 1, … , 𝐺 initialize the following: 

𝒜(0) = (

1

G
∑ ∑ 𝐴𝑘

𝐺
𝑘=1

𝑛
𝑖=1 +

1

Δ2
𝐸𝐷

1

G
∑ ∑ 𝐴𝑘𝑥⃗𝑖

𝐺
𝑘=1

𝑛
𝑖=1

1

G
∑ ∑ 𝑥⃗𝑖

𝑇
𝐴𝑘

𝐺
𝑘=1

𝑛
𝑖=1

1

G
∑ ∑ 𝑥⃗𝑖

𝑇
𝐴𝑘𝑥⃗𝑖

𝐺
𝑘=1

𝑛
𝑖=1 +

1

𝜎𝑛
2

) ,

𝑑(0) = (
1

G
∑ ∑ 𝑐𝑘

𝑇𝐴𝑘
𝐺
𝑘=1

𝑛
𝑖=1

1

G
∑ ∑ 𝑐𝑘

𝑇𝐴𝑘𝑥⃗𝑖
𝐺
𝑘=1

𝑛
𝑖=1 +

𝛽𝑛

𝜎𝑛
2)

𝑇

,

(𝑡(0), 𝑠(0))
𝑇

=  ℬ(0)𝑑(0) ;   ℬ(0) =  [𝒜(0)]
−1

,

𝐹(0) = 𝐿𝑆𝜃({𝑥⃗𝑖}; 𝑡(0), 𝑠(0)|𝑛; 𝑀) −
1

2
ln (det(𝒜(0))) +

𝐷+1

2
ln(2𝜋𝑒) +

+ln (∏ [∑ 𝜌(𝑘|𝑠(0)𝑥⃗𝑖 + 𝑡(0); 𝑀)exp (−
1

2
𝑇𝑟( ℬ(0)𝒞𝑖𝑘))𝐺

𝑘=1 ]𝑛
𝑖=1 ) ,

  (40) 

set counter 𝑗 = 0 and small 𝜀 for the stop criterion; 

Iteration: increment counter 𝑗 = 𝑗 + 1 until 𝐹(𝑗) stabilizes at some level: |𝐹(𝑗) −

𝐹(𝑗−1)| < 𝜀  
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𝜋𝑖𝑘
(𝑗)

=
𝜌(𝑘|𝑠(𝑗−1)𝑥⃗𝑖+𝑡(𝑗−1);𝑀)exp(−

1

2
𝑇𝑟( ℬ(𝑗−1)(𝑛;𝑀)𝒞𝑖𝑘))

∑ 𝜌(𝑙|𝑠(𝑗−1)𝑥⃗𝑖+𝑡(𝑗−1);𝑀)exp(−
1

2
𝑇𝑟( ℬ(𝑗−1)(𝑛;𝑀)𝒞𝑖𝑙))𝐺

𝑙=1

𝒜(𝑗) = (
∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝐴𝑘

𝐺
𝑘=1

𝑛
𝑖=1 +

1

Δ2
𝐸𝐷 ∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝐴𝑘𝑥⃗𝑖

𝐺
𝑘=1

𝑛
𝑖=1

∑ ∑ 𝜋𝑖𝑘
(𝑗)

𝑥⃗𝑖
𝑇

𝐴𝑘
𝐺
𝑘=1

𝑛
𝑖=1 ∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝑥⃗𝑖

𝑇
𝐴𝑘𝑥⃗𝑖

𝐺
𝑘=1

𝑛
𝑖=1 +

1

𝜎𝑛
2

) ,

𝑑(𝑗) = (∑ ∑ 𝜋𝑖𝑘
(𝑗)

𝑐𝑘
𝑇𝐴𝑘

𝐺
𝑘=1

𝑛
𝑖=1 ∑ ∑ 𝜋𝑖𝑘

(𝑗)
𝑐𝑘

𝑇𝐴𝑘𝑥⃗𝑖
𝐺
𝑘=1

𝑛
𝑖=1 +

𝛽𝑛

𝜎𝑛
2)

𝑇

(𝑡(𝑗), 𝑠(𝑗))
𝑇

=  ℬ(𝑗)𝑑(0) ;   ℬ(𝑗) =  [𝒜(𝑗)]
−1

,

𝐹(𝑗) = 𝐿𝑆𝜃({𝑥⃗𝑖}; 𝑡(𝑗), 𝑠(𝑗)|𝑛; 𝑀) −
1

2
ln (det(𝒜(𝑗))) +

𝐷+1

2
ln(2𝜋𝑒) +

+ln (∏ [∑ 𝜌(𝑘|𝑠(𝑗)𝑥⃗𝑖 + 𝑡(𝑗); 𝑀)exp (−
1

2
𝑇𝑟( ℬ(𝑗)𝒞𝑖𝑘))𝐺

𝑘=1 ]𝑛
𝑖=1 ) ,

 (41) 

The advantage of the obtained algorithm (39), (40), (41) is that as the iterations 

grow, the free energy necessarily increases, and being bounded from above by 

𝐿̃((𝑛, {𝑥⃗𝑖}) |𝑀) (14) always converges to a certain limit. And this means that the 

process of computation will always stop.  

In a more simpler form, the above results for the particular case  𝐷 = 2, in the 

problem of image identification were discussed in [12].  

Conclusions 

The proposed in the paper approach and its algorithmic implementations are 

clear in theoretical concepts and computationally efficient. Using the principles of the 

statistical, models based inferences approach, we show that accepted identification 

procedure can be reduced to finding the maximum likelihood (or maximum a 

posterior) estimates of some parameters for each precedent and the subsequent 

comparison of the resulting likelihood functions for all the precedents. Developed 

and discussed VM-like algorithms for calculating that parameters seems to be the 

most reliable in many respects. In this connection, explicit expressions are given for 

estimating parameters and likelihood functions iterative computation.  

Some results of numerical modeling, reflecting the potential characteristics of 

the considered approach are presented in [12]. Since they are better than the results of 

other methods, we hope that the identification of the point process intensity shape 
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proposed in the paper will be useful not only theoretically, but also for developing 

computer algorithms for many applications. 
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