"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2017

contents             full textpdf   

UDC 621.385.032

Modern electron sources for TWTs in millimeter and submillimeter ranges

 

T. M. Krachkovskaya 1,2, G. V. Sahadji 2, S. D. Zhuravlev 1,2

1 Yuri Gagarin Saratov State Technical University, 77 Polytechnicheskaya St., Saratov 410054, Russia

2 JSC "R&D enterprise "Almaz", 1 Panfilova St., Saratov 410033, Russia

 

The paper is received on December 6, 2017

 

Abstract. The paper presents the state of development of electron sources used in traveling wave tubes (TWT). Main achievements in the field of manufacturing technology of metal porous cathodes, matrix field emission cathodes, scandium cathodes, metal-alloy cathodes are described. Modern level of emission parameters, reliability and durability of such cathodes are considered. Actual problems for developments of electron sources for TWTs in millimeter and submillimetric ranges are discussed. Moreover, traditional emissive materials and the newest cathode materials based on carbon nanoclusters are described. Conclusions are made about further ways of developing the technology for manufacturing metal porous cathodes used nanocarbon.

Keywords: metal porous cathodes, matrix field emission cathodes, scandium cathodes, metal-alloy cathodes, nanocarbon material.

References

1.         Booske J. H., Whaley D. R., Menninger W. L., Hollister R. S., and Armstrong C. M. Traveling-wave tubes. Modern Microwave and Millimeter-Wave Power Electronics, 2005, No. 4, pp. 171–245.

2.              Chong C.K. and Menninger W.L. Latest advancements in high- power millimeter-wave helix TWTs. IEEE Transactions on Plasma Science, 2010, Vol. 38, No. 6, pp. 1227–1238.

3.              Longo R.T. Physics of thermionic dispenser cathode aging. J. Appl. Phys., 2003, Vol. 94, No. 10, pp. 6966–6975.

4.              Dubua B.Ch. Modern efficient cathodes. Radio. [Radio], 1999, No. 4, pp. 55. (In Russian)

5.         Kozlov V.I. Emission properties and durability of the metal porous cathodes for microwave devices: Overview of Electronic Engineering. Elektronnaya tekhnika, ser.1 SVCh-tekhnika. [Electronic equipment. Ser. 1 Microwave Technology], 1983, Vol. 8 (541), pp. 54. (In Russian)

6.         Virin J.L., Dubua B.Ch. The emission properties of the metal porous cathodes based on osmium. Izvestiya AN SSSR, Ser. Fizicheskaya. [Bulletin of the Russian Academy of Sciences: Physics], 1979, Vol.43, no.3, pp. 662. (In Russian)

7.         Reznev V.A., Gurkov Y., Kiselev A.B. Sposob izgotovleniya metalloporistogo katoda. [A method of manufacturing metal porous cathode]. Patent 2064204 (RU), 1996. (In Russian)

8.         Barantseva O.S., Kozlov V.I., Osipov V.A. Sposob izgptovleniya metalloporistogo katoda s dvukhsloinoi gubkoi. [A method of manufacturing a two-layer cathode metal porous sponge]. Patent 1621771 (RU), 1990. (In Russian)

9.         Dubua B.Ch., Kultashev D.C., Polivnikova O.V. Emission electronics, nanotechnology, Synergetics (the history of ideas in the cathode technology). Elektronnaya tekhnika, ser.1 SVCh-tekhnika. [Electronic equipment. Ser. 1 Microwave Technology], 2008, No. 4 (497), pp. 3-22. (In Russian)

10.           New dispenser cathodes Chinese developers. Novosti SVCh tekhniki. [News of microwave technology], 2007, No. 3, pp.19-22. (In Russian)

11.           The dispenser cathode with a projected lifetime of more than 20 years. Novosti SVCh tekhniki. [News of microwave technology], 2015, No. 6, pp.22-27. (In Russian)

12.           Usanov D.A., Melnikova I.P., Mullin V.V., Semenov V.K., Kazakov V.K., Naydenov G.P. Sposob izgotovleniya metalloporistogo katoda iz vol'framovogo poroshka. [A method of manufacturing metal porous cathodes of tungsten powder]. Patent 2297068 (RU), 2007. (In Russian)

13.           Reznev V.A Metalloporistyi katod. [Metal porous cathode]. Patent 46605 (RU), 2005. (In Russian)

14.           V.A. Reznev. Sposob izgotovleniya metalloporistogo katoda [A method for manufacturing mechanical metal porous cathode]. Patent 1415973 (RU). 1995. (In Russian)

15.           Polivnikova O.V. Pripoi dlya soedineniya elementov katodno-podogrevatel'nogo uzla. [Solder for connecting elements of cathode preheating unit]. Patent 2278010 (RU), 2006. (In Russian)

16.           Maslennikov O.Y., Ushakov A.B. Effektivnye termokatody (konstruktsii i tekhnologii). [Effective thermionic cathodes (design and technology)], part 2. Moscow, MIPT Publ., 2003, 129 p. (In Russian)

17.           Singh A.K., Ravi M., Bisht M.S., Barik R.K., Shukla S.K., Prajesh R., Singh T.P., Saini S.K., Ashish Kumar, Rajesh Kumar, and Raju R.S. Active sintered controlled porosity dispenser (CPD) cathode. IVESC-ICEE, Saint-Petersburg, 2014, pp. 253-254.

18.           Cathodes with controlled porosity. Novosti SVCh tekhniki. [News of microwave technology], 2006, No.9, pp. 16-20. (In Russian)

19.          Sakhadzhi G.V., Konyushin A.V., Odintsova Y.A, Popov I.A. Sposob izgotovleniya emissionnoi poverkhnosti metalloporistogo katoda. [A method of processing metal porous cathode emitting surface]. Patent 2459306 (RU), 2014. (In Russian)

20.           Sakhadzhi G.V., Konyushin A.V., Odintsova Y.A., Popov I.A. Metalloporistyi katod i sposob ego izgotovleniya. [Metal porous cathode and a method of its manufacturing]. Patent 2459305 (RU), 2012. (In Russian)

21.           Gartner G., Geittner P., Lydtin H., Ritz A. Emission properties of top-layer scandate cathodes prepared by LAD. App.Surf.Sc., 1997, No. 111, pp. 11-17.

22.           Gaertner G., Geittner P., Raasch D., Wiechert D. Scandate-Vorratskathode. Patent 19961672Ā4 (DE), 2009.

23.           Gaertner G., Barratt D. Life-limiting mechanisms in Ba-oxide, Ba-dispenser and Ba-Scandate cathodes. App.Surf.Sc., 2005, No. 251, pp. 73-79.

24.           Liu W., Zhang K., Wang Y., Pan K., Gu X., Wang J., Li J., Zhou M. Operating model for scandia doped matrix scandate cathodes. App.Surf.Sc., 2005, No. 251, pp. 80-88.

25.           The cathodes with high current density in the report of the International Conference EVP 2012 IEEE IVEC. Novosti SVCh tekhniki. [News of microwave technology], 2013, No. 1, pp.11-25. (In Russian)

26.           Li J., Wang H., Yu Z., Li N., Wang P., Shao W., Zhang K. Scandate cathodes work at BVERJ. IVEC, Beijing, 2015.

27.           Skandate metal porous cathodes with a large current density. Novosti SVCh tekhniki. [News of microwave technology], 2006, No. 11, pp.16-21. (In Russian)

28.           Markin S.N. Poverkhnostnye protsessy v sovremennykh termoemissionnykh katodakh: diss. kandidata fiz.- mat. n. [Superficial processes in modern thermionic cathodes: Dr. Sci. (phys.-math.) dissertation]. Moscow, 2006, 163 p. (In Russian)

29.           Li I.P., Kapustin V.I.et al. Physical and chemical properties "skandate" cathode materials Naukoemkie tekhnologii. [High technologies], 2014, Vol.15, No. 11, pp.40-50. (In Russian)

30.           Kapustin V.I., Lee I.P. Skandate cathodes microwave devices. Elektronika. Nauka. Tekhnologiya. Biznes. [Electronics. The science. Technology. Business], 2015, No.2 (06142), pp.129-136. (In Russian)

31.           Makarov A.P. Emission properties, microstructure and surface composition scandium impregnated cathode tungsten and tungsten-rhenium matrix. IVESC. St. Peterburg, 2014, pp.164-165.

32.           Makarov A.P., Bersneva E.Yu., Zemchikhin E.M., Chistova G.I., Zakurdaev A.D., Ivanov V.V., Urazov M.N., Hrustov V.R. Scandate cathodes with high current density for application in microwave devices. Elektronnaya tekhnika, ser.1 SVCh-tekhnika. [Electronic equipment. Ser. 1 Microwave Technology], No. 4(531), 2016, pp. 15-23. (In Russian)

33.           Sakhadzhi G.V., Krachkovskaya T.M., Storublev A.V., Bogachev R.Y. Investigation metal porous cathode with the addition of scandium to the active substance. Tezisy dokladoā XXII nauchno-tekhnicheskoi konferentsii s uchastiem zarubezhnykh spetsialistov "Vakuumnaya nauka i tekhnika". [Theses of the report of the XXII scientific and technical conference with participation of foreign specialists "Vacuum science and technology"]. Feodosiya, 2015, pp. 217-219. (In Russian)

34.           Whaley D.R. 100W Operation of a Cold Cathode TWT. IEEE Trans. On Electron Dev., Vol.56, No.5, 2009, šp.896-905.

35.           Gulyaev Y.V., Zhukov N.D., Bushuyev N.A. Carbon nanotubes and nanoclusters for the construction of new micro- and nanoelectronics devices. Elektronnyye pribory i ustroystva SVCH: materialy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 50-letiyu FGUPP "NPP "Almaz". [Electronic devices and microwave devices: proceedings of the scientific and technical conference dedicated to the 50th anniversary of the Federal State Unitary Enterprise "NPP "Almaz"]. Saratov, SSU, 2007, pp.3-13. (In Russian)

36.           Apin M.P., Bushuyev N.A., Burtsev A.A. and other. Technology field emission cathodes based on carbon nanotubes with high density power amplifiers terahertz. Elektronnyye pribory i ustroystva SVCH: materialy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 55-letiyu "NPP "Almaz". [Electronic devices and microwave devices: proceedings of the scientific and technical conference dedicated to the 55th anniversary "NPP "Almaz"]. Saratov, SSU, 2012, pp.61-63. (In Russian)

37.           Kim H.J., Choi J.J., Han J.-H., Park J.H., Yoo J.-B. Design and Field Emission Test of Carbon Nanotube Pasted cathodes for Traveling-Wave Tube Applications. IEEE Trans. On Electron Dev., Vol.53, No.11, 2006, šp.26-74.

38.           Shesterkin V.I. etc. Improved field emission properties of the cell glassy carbon high aspektivnym for acute. Tezisy dokladov nauchno-tekhnicheskoy konferentsii AO "NPP "Istok": SVCH-elektronika. [Theses of reports of the scientific and technical conference of JSC "SPE "Istok": Microwave electronics]. Fryazino, 2016, pp.30-31. (In Russian)

39.           Shesterkin V.I. et al. Multilayer needle cathodes with a high aspect ratio of the glassy. Tezisy dokladov nauchno-tekhnicheskoy konferentsii AO "NPP "Istok": SVCH-elektronika. [Theses of reports of the scientific and technical conference of JSC "SPE "Istok ": Microwave electronics]. Fryazino, 2016, pp.32-33. (In Russian)

40.           Shesterkin V.I. et al. Autoissue cell with a dielectric gap cathode-grid and prospects of their use in electronic devices. Doklady mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Aktual'nyye problemy eletronnogo priborostroyeniya". [Reports of the International Scientific and Technical Conference "Actual Problems of Electronic Instrumentation"]. Saratov, SSTU, 2016, pp. 161-165. (In Russian)

41.           Benedik A.I., Krachkovskaya T.M., Shesterkin V.I. Mińrodischarges in diodes with small gaps and field emission cathodes of glassy. Technical Physics, Vol.60, No.10, 2015, pp.122-126.

42.           Bushuyev N.A. and others. The emission characteristics of a multi-beam electron gun with a field emission cathodes of glassy. Technical Physics, Vol.86, No. 2, 2016, pp.134-139.

43.           Eletskii A.V., Smirnov B.M. Cluster C60-a new form of carbon. Uspekhi Fizicheskikh Nauk [Physics - Uspekhi], 1991. Vol.161. No. 7, pp. 173-192.

44.           Zharikova E.F., Zyuzin V.V., Shishagin V.V., Zorin E.N., Nikiforov M.E., Sidorov A.A., Novotortsev V.M., Eremenko I.L. Sposob izgotovleniya uglerodnykh nanotrubok. [A method for producing carbon nanotubes]. Patent 2431600 (RU), 2011. (In Russian)

45.           Ponomarev A.N., Nikitin V.A. Poliedral'nye mnogosloinye uglerodnye nanostruktury fulleroidnogo tipa. [Polyhedral multilayer carbon nanostructures fulleroid type]. Patent 2196731 (RU), 2003. (In Russian)

46.           Ponomarev A.N., Yudovich M.E. Mnogosloinye uglerodnye nanostruktury fulleroidnogo tipa toroidal'noi formy. [Multilayer carbon nanostructuresof fulleroid type and toroidal shape]. Patent 2397950 (RU), 2010. (In Russian)

47.           Elshina L.A. Elektrokhimicheskii metod polucheniya grafena. [An electrochemical method for graphene production]. Patent 2500615 (RU), 2013. (In Russian)

48.           Rakhimov A.T., Suetin N.V., Timofeev M.A., Tugarov V.A., Rezunenko V.I. Sposob polucheniya almaznykh plenok metodom gazofaznogo sinteza. [A method for production of diamond films by chemical vapor deposition]. Patent 2158036 (RU), 2000. (In Russian)

49.            Rakhimov A.T., Samorodov V.A., Suetin N.V., Pochinkin V.V. Sposob polucheniya almaznykh plenok metodom gazofaznogo sinteza. [A method for production of diamond films by chemical vapor deposition]. Patent 2158037 (RU), 2000. (In Russian)

50.           Semenov A.P., Semenov I.A. Sposob polucheniya nanorazmernykh sloev ugleroda so svoistvami almaza. [A process for preparing nanoscale carbon layers with the diamond properties]. Patent 2532749 (RU), 2014. (In Russian)

51.           Kharlamova M.V. The electronic properties of single-walled nanotubes and their derivatives. Phys. Usp., Vol. 56, pp. 1047–1073 (2013). Doi: 10.3367/UFNr.0183.201311a.1145.

52.           Brozdnichenko A. N., Ponomarev A. N., Pronin V. P., and Rybalko V.V. Magnetic Properties of Multiwall Carbon Nanotubes and Astralenes in Strong Electric Fields. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2007, Vol. 1, No. 1, pp. 110–112. Doi: 10.1134/S1027451007010223.

53.           Shames A.I., Katz E.A., Panich A.M., Mogilyansky D., Mogilko E., Grinblat J., Belousov V.P., Belousova I.M., Ponomarev A.N. Structural and magnetic resonance study of astralen nanoparticles. Diamond & Related Materials, 2009, Vol. 18, Issues 2-3, pp.505-510. Doi.org/10.1016/j.diamond.2008.10.056.

54.           Shames A. I., Felner I., Osipov Yu. V., Katz E. A., Mogilko E., Grinblat J., Panich A. M., Belousov V. P., Belousova I. M., and Ponomarev A. N. Closed π-Electron Network in Large Polyhedral Multi-Shell Carbon Nanoparticles. Nanoscience and Nanotechnology Letters, 2011, Vol.3, pp. 41–48. Doi:10.1166/nnl.2011.1117.

55.           Baht D.V., Blank V.D., Bug S.G., Kulnitsky B.A., Polyakov E.V, Beng-Joo Kwon Yang-Du Li. Sposob polucheniya nanovolokonnogo materiala dlya kholodnykh katodov. [Method for producing nanofiber material for cold cathodes]. Patent 2288890 (RU), 2006. (In Russian)

56.           Alshevsky Y.L., Baht D.V., Blank V.D., Bormashov V.S., Buga S.G., Sheshin E.P. Sposob izgotovleniya kholodnogo katoda s emissionnym sloem iz nanovolokonnogo materiala na osnove ugleroda. [A method of manufacturing a cold cathode emission nanofiber layer of carbon-based material]. Patent 2331573 (RU), 2008. (In Russian)

57.           Koroteev V.O., Okotrub A.V., Guselnikov A.V., Bulusheva L.G. Sposob polucheniya materiala dlya avtoemissionnogo katoda. [The process for production of the material for the field emission cathode]. Patent 2463253 (RU), 2012. (In Russian)

58.           Rakhimov A.T.  "Autoemission cathodes (cold emitters) on nanocrystalline carbon and nanodiamond films: physics, technology, applications". Phys. Usp. Vol. 43, pp. 926–929 (2000). DOI: 10.1070/PU2000v043n09ABEH000808

59.           Eletskii A.V. Carbon nanotubes and their emission properties. Phys. Usp. Vol. 45, pp. 369–402 (2002). DOI: 10.1070/PU2002v045n04ABEH001033

60.           Eletskii A.V. Cold field emitters based on carbon nanotubes. Phys. Usp., Vol. 53, pp. 863–892 (2010). Doi: 10.3367/UFNr.0180.201009a.0897.

 

For citation:
T. M. Krachkovskaya, G. V. Sahadji
, S. D. Zhuravlev. Modern electron sources for TWTs in millimeter and submillimeter ranges. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2017. No. 12. Available at http://jre.cplire.ru/jre/dec17/5/text.pdf.