"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2017

contents             full textpdf   

UDC 539.32

Size effect in dependence of the elastic characteristics of thin copper films on their thickness


K. M. Tsysar 1, V.S. Zelenskiy 1, V.A. Vdovin 2 , V.G. Andreev 1

 1 M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory Bldg. 1-2, Moscow 119991, Russia

 2 Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia


The paper is received on November 29, 2017


Abstract. Longitudinal elastic deformations of free copper films and thin copper films formed on a substrate surface are studied by the methods of classical molecular dynamics. Dependence of the elastic properties of copper films on the thickness and method of film formation was found. The critical values of the longitudinal stresses on the rapture and the limiting values of the elastic deformations at which irreversible defects in the atomic structure appear in the film are determined. The transitions from the elastic region to the plasticity region of films as a function of thickness were determined for both types of films. The critical stresses are calculated for the destruction of the surface of the film. The data obtained can be used for further investigation of the properties of surface nanoscale structures, studying the effect of deformations of films on their quantum absorbing and conducting properties, as well as the properties of nano-dimensional circuits and devices formed on their surface.

Keywords: copper nanofilms,  molecular dynamics, film elasticity, Young's modulus.


1. Parkin S.P.,  Hayashi M., Thomas L. Magnetic domain-wall racetrack memory. Science. 2008. Vol. 320. No. 5873, P. 190-194. DOI https://doi.org/10.1126/science.1145799

2. Tsysar K. M., Kolesnikov S. V., Sitnikov I. I., Saletsky A. M., Ab initio investigation of supported Au–Mn nanowires, Modern Physics Letters B 2017 Vol. 31, P.1750142 DOI https://doi.org/10.1142/S0217984917501421.

3. Liu M., Han Y., Tang L., Jia J.-F. et al. Interplay between quantum size effect and strain effect on growth of nanoscale metal thin films.  Physical Review B. 2012. Vol. 86. No.12. P. 125427.  DOI https://doi.org/10.1103/PhysRevB.86.125427

4. Rubio G., Agrait N., Vieira S. Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport. Phys. Rev. Lett. 1996. Vol. 76. P. 2302–2305. DOI https://doi.org/10.1103/PhysRevLett.76.2302

5. C. Untiedt, Rubio G., Vieira S., Agrait N. Fabrication and characterization of metallic nanowires. Phys. Rev. B. 1997. Vol. 56. P. 2154–2160. DOI https://doi.org/10.1103/PhysRevB.56.2154  

6. Subramanian S. K. R. S., Bhethanabotla V. R., and Joseph B. Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires. Phys. Rev. B. 2007. Vol. 76. P. 134117. DOI https://doi.org/10.1103/PhysRevB.76.134117

7. Smelova E.M., Sitnikov I.I., Zelensky V.S., Tsysar K.M., Andreev V.G., Vdovin V.A., Saletsky A.M. Mechanical properties of bimetallic one-dimensional structures. Proc. SPIE 10224, International Conference on Micro- and Nano-Electronics 2016, 1022406. DOI  http://dx.doi.org/10.1117/12.2267129

8. Morozov, I. V.; Kazennov, A. M.; Bystryi, R. G.; Norman, G. E.; Pisarev, V. V.; Stegailov, V. V. Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs. Computer Physics Communications. Vol. 182. P. 1974-1978. DOI https://doi.org/10.1016/j.cpc.2010.12.026

9. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995. Vol. 117. P.1–19. DOI https://doi.org/10.1006/jcph.1995.1039

10. Zhou X.W. , Murdick D.A., Gillespie B., Wadley H.N.G. Atomic assembly during GaN film growth: Molecular dynamics simulations. Phys. Rev. B. 2006. Vol. 73. P. 045337. DOI https://doi.org/10.1103/PhysRevB.73.045337

11. Nord J., Albe K., Erhart P., Nordlund K. Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys. Condens. Matter. 2003. Vol. 15. P. 5649. DOI https://10.1088/0953-8984/15/32/324

12. Zhou A., Xiu X.Q., Zhang R., Xie Z.L., Hua X.M., Liu B., Han P., Gu S.L., Shi Y., Zheng, Y.D. Roles of V/III ratio and mixture degree in GaN growth: CFD and MD simulation study. Chin. Phys. B. 2013. Vol. 22. P. 017801. DOI https://doi.org/10.1088/1674-1056/22/1/017801

13. Stepanyuk V.S., Bruno P., Klavsyuk A.L., Baranov A.N., Hergert W., Saletsky A.M. Structure and electronic states in Cu nanocontacts. Surface Science. 2004. Vol. 566-568, P. 944-948. DOI https://doi.org/10.1016/j.susc.2004.06.032

14. Grigoryev I.S., Meylikhov E.Z., editors. Fizicheskiye velichiny. Spravochnik. [Handbook on Physics]. Moscow, Energoatomizdat Publ., 1991, 1232 p.  (In Russian)

15. Bukreeva K.A., Babicheva R.I., Dmitriev S.V., Mulyukov R.R., Zhou K. Negative stiffness of the FeAl intermetallic nanofilm. Physics of the Solid State. 2013. Vol. 55. No. 9. P. 1963-1967. DOI https://doi.org/10.1134/S1063783413090072

16. N. Amigo et al. Atomistic simulation of single crystal copper nanowires under tensile stress: Influence of silver impurities in the emission of dislocations. Computational Materials Science. 2014. Vol. 87. P. 76–82. DOI https://doi.org/10.1016/j.commatsci.2014.02.014

17. Puksik, N. et al. A comparison of the uniaxial deformation of copper and nickel (1 1 19) surfaces: a molecular dynamics study. Sci. Rep. 2017. Vol. 7. P. 42234. DOI https://doi.org/10.1038/srep42234

For citation:
K. M. Tsysar, V. S. Zelenskiy, V. A. Vdovin, V. G. Andreev. Size effect in dependence of the elastic characteristics of thin copper films on their thickness. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2017. No. 12. Available at http://jre.cplire.ru/jre/dec17/7/text.pdf.