"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2018

contents of issue      DOI  10.30898/1684-1719.2018.12.10     full text in Russian (pdf)  

SYMBOL-BY-SYMBOL DECODING ALGORITHMS FOR SIGNALS BASED ON SINGLE-PARITY-CHECK CODES IN THE FIELD GF(2m)

 

L. E. Nazarov, P. V. Shishkin

Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences,
Vvedensky Sq.1, Fryazino Moscow region 141190, Russia

 

 The paper is received on December 3, 2018

 

Abstract. The focus of this paper is directed towards the development and investigation of the characteristics of symbol-by-symbol decoding algorithms for signal constructions based on partial signals and on single-parity-check codes in non-binary fields GF(2m). The coherent and noncoherent symbol-by-symbol decoding algorithms for signal constructions based on partial signals and on single-parity-check codes are presented in the article. The non-binary fields GF(2m) are construct on the base of module primitive polyneme arithmetic. The decisions evaluated with application of these decoding algorithms are equivalent to the output soft decisions used for block turbo-codes iterative decoding procedures. The base of developed symbol-by-symbol decoding algorithms is organization of set m independent channels that transmit information with usage of the component binary error-correcting single-parity-check codes in binary field. The decoding algorithms for these component codes use input soft symbol decisions. The coherent and noncoherent algorithms for evaluation input soft symbol decisions are developed for partial signals that equivalent Hadamard functions. The base of these algorithms is Fast Hadamard Transformation with dimension 2m. The computer simulations for developed symbol-by-symbol decoding for investigated signal constructions with information volumes 200 bits for fields GF(23), GF(26), GF(28)  and for Additive White Gaussian Noise are performed. It shown the error-performance degradations without code concerning with single-parity-check code are about 1 dB for bit-error 0.00001.

The work is performed with support by RFFI (project (¹16-07-00746).

Key words: non-binary fields, signals, symbol-by-symbol decoding, single-parity-check codes, block product codes, Fast Hadamard Transformation.

References

1. Johnson S.J. Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes. Cambridge: Univ. Press, 2010. 335 p.

2. Hagenauer J., Offer E., Papke L. Iterative decoding of binary block and convolutional codes.  IEEE Transactions on Information Theory. 1996. Vol. IT-42. No. 2.  pp. 429-448.

3. Nazarov L.E., Golovkin I.V. The algorithms of iterative symbol-by-symbol decoding for turbo-codes based on single-parity-check codes. Zhurnal Radioelectroniki - Journal of Radio Electronics.  2011. No. 1. Avaiable at: http://jre.cplire.ru/jan11/3/text.pdf. (In Russian)

4. Nazarov L.E., Batanov V.V., Kuznezov O.O. Symbol-by-symbol iterative decoding algorithms for turbo-codes based on single-parity-check codes.  Zhurnal Radioelectroniki - Journal of Radio Electronics. 2014. No. 9. Avaiable at: http://jre.cplire.ru/jre/sep14/1/text.pdf.  (In Russian)

5. Farhadi G., Jamali S.H. Performance Analysis of Fiber-Optic BPPM CDMA Systems with Single Parity-Check Product Codes.  IEEE Transactions on Communications. 2006. Vol. 54. No. 9. pp. 1643-1653.

6. Li J., Narayanan R., Kurtas E., Georghiades C.N. On the Performance of High-Rate TPC/SPC Codes and LDPC Codes Over Partial Response Channels.  IEEE Transactions on Communications. 2002. Vol. 50. No. 5. pp. 723-734.

7. Ping Li, Chan S., Yeng K.L. Efficient soft-in-soft-out sub-optimal decoding rule for single parity check codes.  Electronic Letters. 1997. Vol. 33. No. 19. pp. 1614-1616.

8. Nazarov L.E., Shishkin P.V. The algorithms of broad band signal symbol-by-symbol decoding for channels with frequency-selective fading. Zhurnal Radioelectroniki - Journal of Radio Electronics.  2016. No. 3. Avaiable at: http://jre.cplire.ru/jre/mar16/3/text.pdf.  (IN Russian)

9. Peterson W.W., Weldon E.J. Error-Correcting Codes. The MIT PRESS  Cambridge, Massachusets and London, England. 1972.

10. Sklar B. Digital Communications. Fundamentals and Applications. Second Edition, 2001. PrentisHall PTR. Upper Saddle River, New Jersey.

11. Smolyaninov V.M., Nazarov L.E. Optimum symbol-by-symbol signal reception using linear codes over GF(2m) . Journal of Communications Technology and Electronics, 1999, Vol. 44, No. 7, pp. 782-785.

12. Li J., Lin S., Abdel-Chaffar K., Ryan W.E., Costello D.J. Jr. LDPC Code Designs, Constructions, and Unification. Cambridge. University Press. United Kingdom. 2017, 248 p.

13. Nazarov LE, Shishkin PV., Batanov V.V. Algorithms for noncoherent iterative rreception of signals based on serial turbo codes and walsh signals during transmission over nonstationary channels. Journal of Communications Technology and Electronics, 2016, Vol. 61, No. 4, pp. 423-429. DOI: 10.1134/S1064226916040082

14. Dunin-Barkovskii IV, Smirnov NV. Teoria veroyatnostei i matematicheskaia statistika v tehnike [The theory of probabilities and mathematical statistic for technics]. Ģoscow, Gosizdatel’stvo nauchno-technicheskoi literatury, 1955, 556 p. (In Russian)

 

For citation:
L. E. Nazarov, P. V. Shishkin. Symbol-by-symbol decoding algorithms for signals based on single-parity-check codes in the field GF(2m). Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 12. Available at http://jre.cplire.ru/jre/dec18/10/text.pdf

DOI  10.30898/1684-1719.2018.12.10