"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2018

contents of issue      DOI  10.30898/1684-1719.2018.12.15     full text in Russian (pdf)  

ENERGY METHOD OF QUASI-OPTIMAL SINGLE-POSITION LOCATION AND NAVIGATION OF A MOVING RADIATION SOURCE WITH ALLOWANCE FOR A PRIORI INFORMATION

 

Yu. G. Bulychev 1, A. A. Mozol 2, A. G. Kondrashov 3, A. V. Yachmenev 4, A. S. Zhuk 5

 

1 JSC «All-Russian Research Institute «Gradient»,  Sokolov Avenue, 96, Rostov-on-Don 344000, Russia

2 North Caucasus branch of Moscow Technical University of Communications and Informatics, Serafimovich street, 62, Rostov-on-Don 344000, Russia

 3JSC «Scientific Production Association «Quantum», Bolshaya Sankt-Peterburgskaya, 73, Veliky Novgorod 173000, Russia

4 Navy Electronic Warfare Service,  Admiralteysky Avenue, 1, St. Petersburg 190000, Russia

5 Kuban State University, Stavropolskaya street, 149, Krasnodar 350090, Russia

 

The paper is received on December 6, 2018

 

Abstract. For an autonomous stationary measuring system that records the normalized radiation power (mainly a direct beam) of a moving source (target), an alternative method has been developed to solve the ranging problem, taking into account the available a priori information. In this case, the model of changing the range is taken as a generalized polynomial with unknown coefficients, and one selective value of the distance to the target is used as a priori information (for example, for the initial or final moment of time from a given observation interval). The issues of quasi-optimal parametric identification of this model, the analysis of the accuracy of the generated range estimates, as well as the possibility of using these estimates in the multi-station systems of passive location and navigation are discussed. An illustrative example is given showing the effect of random errors in power measurements and a priori data on the accuracy characteristics of the method.

Key words: moving radiation source, generalized polynomial model, normalized model, normalized power measurements, autonomous stationary measuring system, a priori information, least squares method, quasi-optimal range estimate, correlation estimation error matrix.

References

1. Mel’nikov Yu.P., Popov S.V. Radiotekhnicheskaya razvedka [Radio Intelligence]. Moscow, Radiotekhnika Publ., 2008 (In Russian).

2. Skvortsov M., Editor. Osnovy manevrirovaniya korabley [The basics of maneuvering ships]. Moscow, Voenizdat Publ., 1966 (In Russian).

3. Khvosch V.A. Taktika podvodnykh lodok [Submarine tactics]. Moscow, Voenizdat Publ., 1989 (In Russian).

4. Lin X., Kirubarajan T., Bar-Shalom Y. and Maskell S. Comparison of EKF, Pseudomeasurement and Particle Filters for a Bearing-only Target Tracking Problem. Proc. SPIE-Int. Soc. Optic. Eng. 2002. Vol. 4728. pp. 240-250.

5. B.M. Miller, K.V. Stepanyan, A.B. Miller, K.V. Andreev and S.N. Khoroshenkikh. Optimal filter selection for UAV trajectory control problems. Proceedings of the 37-th Conference on Information Technology and Systems – 2013. Conference for Young Scientists and Engineers. IITP RAS, 1-6 September 2013. Kaliningrad. Russia. 2013. pp. 327-333.

6. V.J. Aidala and S.C. Nardone. Biased Estimation Properties of the Pseudolinear Tracking Filter. IEEE Transactions on Aerospase Electronic systems. 1982. Vol. 18, No. 4. pp. 432-441.

7. K.S. Amelin, A.B. Miller. An algorithm for rfinement of the position of a light UAV on the asis of Kalman filtering of bearing measurements. Journal of Communications Technology and Electronics. 2014. Vol. 59. No. 6. pp. 622-631.

8. Miller A., Miller B. Stochastic control of light UAV at landing with the aid of bearing-only observations. Proceedings of SPIE. Eight International Conference on Machine Vision (ICMV 2015). 2015. Vol. 9875. 987529. pp. 1-10. doi:10.1117/12.2228544A.

9. Karpenko S., Konovalenko I., Miller A., Miller B., Nikolaev D. UAV Control on the Basis of 3D Landmark Bearing-Only Observations.  Sensors 2015 [Special Issue]. 15(12). pp. 29802-29820. doi:10.3390/s151229768.

10. Medvedev V.P. Investigation of methods for determining the location of radio sources from an aircraft. PhD thesis. Technological Institute of South Federal University, Taganrog, 2007 (In Russian).

11. Syten’kiy V.D. Passive location based on amplitude measurements. Izvestiya VYZov Radioelektronika – Newsletters of Universities. Radio Electroncs. 2011. No. 1. Pp. 69-75 (In Russian)

12. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina, A. A. Mozol’. Estimation of parameters of object motion based on stationary quasi-autonomous direction finder. Journal of Computer and System Sciences International. 2013. Vol.52. No. 5. pp. 811-818.

13. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina. Amplitude-Goniometric passive location of an emitting target 
in the nonstationary radio channel.
Journal of Communications Technology and Electronics. 2016. Vol. 61. No. 3. pp. 246-253.

14. V. Yu. Bulychev, A. A. Mozol’. Modified angular-energy method of single-position location under conditions of a priori uncertainty. Uspekhi sovremennoy radioelektroniki - Successes of modern radio electronics. 2017. No. 4. Pp. 58-67 (In Russian).

15. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina,  I. G. Nasenkov. An Angular–Energy Method of Nonstationary Passive Location 
Based on a Single-Position System. Journal of Computer and System Sciences International. 2015. Vol.54. No. 5. pp. 783-797.

16. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina,  I. G. Nasenkov.
Passive location of a group of moving targets with one stationary bearing with prior information. Automation and Remote Control.
2017. Vol. 71. No. 1.
pp. 125-137.

17. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina,  I. G. Nasenkov. Method of passive-energy location and navigation in stationary and non-stationary settings. RadiotekhnikaRadio Engineering. 2015. No. 6. pp. 107-115 (In Russian).

18. Yu. G. Bulychev, S. S. Ivakina,  I. G. Nasenkov. Justification of the possibility of the combined use of angular and angular-power methods of passive location. Radiotekhnika- Radio Engineering. 2015. No. 3. pp. 128-136 (In Russian)

19. Ya. Shirman, Editor. Teoreticheskie osnovy radiolokatsii   [Theoretical foundations of radar]. Moscow, Sovetskoe Radio Publ., 1970, 561 p. (In Russian).

20. Koroswtelev A.A., Kluev N.F., Mel’nik Yu.A. et al. Êîðîñòåëåâ À.À., Teoreticheskie osnovy radiolokatsii   [Theoretical foundations of radar]. Moscow, Sovetskoe Radio Publ. 1978. 608 p. (In Russian)

21. J.-E. Berg, R. Bownds, F. Lotse Path loss and fading models for microcells at 900 MHz. Proc. IEEE Veh. Tech. Conf. May 1992. pp. 666-671.

22. Whitteker J.H. Measurements of path loss at 910 MHz for proposed microcell urban mobile systems.  IEEE Trans. Veh. Technol. Aug. 1988. Vol. 37. pp. 125-129.

23. Börjeson H., Bergljung C., Olsson L.G. Outdoor microcell measurements at 1700 MHz. Proc. IEEE Veh. Tech. Conf. May 1992. pp. 927-931.

24. Ventsel’ E.S. Teoriya verroyatnostey [Probability theory]. Moscow, Vysshaya Shkola Publ., 1999, 576 p. (In Russian)

25. Kondratyev V.S., Kotv A.F., Markov L.N. Mnogopozitsionye radiotakhnicheskie sistemy [Multipoint radio systems]. Moscow, Radio I Svyaz Publ., 1986, 264 p. (In Russian)

26. Mandel’ I.D. Klasternyi analiz [Cluster analysis]. Moscow, Fanansy I Statistika Publ., 1988 (In Russian).

27. Williams W.T., Lance D.N. Hierarchical classification methods. In   M.B.Malutov, Editor. Statisticheskie metody dlya EVM [Statistical methods for computers]. Moscow, Nauka Publ., 1986 (In Russian).

28. Lance G.N., Willams W.T. A General theory of classificatory sorting strategies.  Comp. J. 1967. No. 9. ð. 373.

29. Feoktistov Yu.A. Teoriya I metody otsenki elektromagnitnoy sovmestimosti radioelektronnykh sredstv [Theory and methods for assessing the electromagnetic compatibility of radio electronic equipment]. Moscow, Radio I Svyaz Publ. 1988. (In Russian)

30. Bykhovskiy M.A. Upravlenie radiochastotnym spektrom I elektromagnitnaya sovmestimost radiosistem. [RF spectrum management and electromagnetic compatibility of radio systems]. Moscow, Eko-Trends Publ., 2006, 376 p. (In Russian)  

31. Tatuzov A.L. Neyronnye seti v zadachakh radiolokatsii [Neural networks in radar tasks]. Moscow, Radiotechnika Publ., 2009. 432 p. (In Russian)

32. Online resource “Pentagonus” Available at  http://pentagonus.ru/publ/18-1-0-546.

33. Zhdanyuk. Osnovy statisticheskoy obrabotki traektornykh izmereniy [Basics of statistical processing of trajectory measurements]. Moscow, Sovetskoe Radio Publ., 1978. 384 p. (In Russian)

 

For citation:

Yu. G. Bulychev, A. A. Mozol, A. G. Kondrashov, A. V. Yachmenev, A. S. Zhuk. Energy method of quasi-optimal single-position location and navigation of a moving radiation source with allowance for a priori information. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 12. Available at http://jre.cplire.ru/jre/dec18/15/text.pdf

DOI  10.30898/1684-1719.2018.12.15