"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 12, 2018

contents of issue      DOI  10.30898/1684-1719.2018.12.19     full text in Russian (pdf)  

The transmission of microwaves through a multilayer metamaterial-dielectric structure:  the near field and the far field 

 I. A. Karpov

Institute of Solid State Physics of Russian Academy of Sciences,
Academician Osipyan str. 2, Chernogolovka, Moscow district, 142432, Russia 

 

The paper is received on December 14, 2018

 

Abstract. In this paper a transmission of electromagnetic radiation through a multilayer metamaterial metal-dielectric structure (multi-fishnet) with new original design of rhombus-like subwavelength apertures in the near field as well as in the far field at microwave frequencies is considered. This multilayer stack consists of alternate periodically patterned metal foils and unperforated dielectric layers. The about eightfold enhancement of the microwave electric field strength behind the central part of the single subwavelength aperture in the form of a rhombus was observed in near field for all the studied foliated samples with the number of perforated aluminium layers from 2 to 12 at frequencies from 7 GHz to 20 GHz. This effect that first disclosed by Ebbesen within the optical range can be useful for both better understanding of the propagation behaviour of the electromagnetic waves and creation of various practical devices utilizing this effect. The number of peaks in the transmission spectrums of the foliated metamaterial samples in the far field is equal to the number of dielectric spacers within a multilayer metamaterial structure. These dielectric spacers play a role of resonators providing the feature of the transmission spectrum similar to Fabry-Perot resonance. The resonant character of transmission for the investigated multilayer metamaterial stack is confirmed by the experimental microwave electric field patterns around the multilayer sample. The experimentally obtained results suppose the presence of a negative effective refractive index at the studied foliated metamaterial during its resonant pass band. 

Keywords: metamaterial, multilayer structures, microwaves, transmission spectrum, surface plasmons, perforated metallic layers, Fabry-Perot cavities.

References

1.     Pendry J. B., Martin-Moreno L., Garcia-Vidal F. J. Mimicking surface plasmons with structured surfaces. Science, 2004, Vol. 305 (5685), p. 847 – 848. DOI: 10.1126/science.1098999  

2.     Ebbesen T. W., Lezec H. J., Ghaemi H. F., Thio T. & Wolff P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, Vol. 391, p. 667 – 669. 

3.     Larciprete M. C., Sibilia C., Paoloni S., Bertolotti M., Sarto F., and Scalora M. Accessing the optical limiting properties of metallo-dielectric photonic band gap structures. Journal of Applied Physics, 2003, Vol. 93, No. 9, p. 5013 – 5017. DOI: 10.1063/1.1564283  

4.     Scalora M., Bloemer M. J., Pethel A. S., Dowling J. P., Bowden C. M., and Manka A. S. Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures. Journal of Applied Physics, 1998, Vol. 83, No. 5, p. 2377 – 2383. DOI: 10.1063/1.366996  

5.     Gadsdon M. R., Parsons J., and Sambles J. R. Electromagnetic resonances of a multilayer metal-dielectric stack. Journal of Optical Society of America B, 2009, Vol. 26, No. 4, p. 734 – 742. 

6.     Ward A. J., Pendry J. B., and Stewart W. J. Photonic dispersion surfaces. Journal of Physics: Condensed Matter, 1995, Vol. 7, No. 10, p. 2217 – 2224. 

7.     Mary A., Rodrigo Sergio G., Martin-Moreno L. and Garcia-Vidal F. J. Plasmonic metamaterials based on holey metallic films. Journal of Physics: Condensed Matter, 2008, Vol. 20, p. 304215-1 – 304215-8. DOI: 10.1088/0953-8984/20/30/304215 

8.     Martin-Moreno L., Garcia-Vidal F. J., Lezec H. J., Pellerin K. M., Thio T., Pendry J. B. and Ebbesen T. W. Theory of Extraordinary Optical Transmission through  Subwavelength  Hole  Arrays.  Physical Review Letters,  2001,  Vol. 86, p. 1114. 

9.     Butler Celia A. M., Parsons James, Sambles J. Roy, Hibbins Alastair P., and Hobson Peter A. Microwave transmissivity of a metamaterial-dielectric stack. Applied Physics Letters, 2009, Vol. 95, p. 174101-1 – 174101-3. DOI: 10.1063/1.3253703  

10. Sauleau R., Coquet Ph., Daniel J. P., Matsui T., and Hirose N. Study of Fabry- Pérot cavities with metal mesh mirrors using equivalent circuit models. Comparison with experimental results in the 60 GHz band. International Journal of Infrared and Millimeter Waves, 1998, Vol. 19, No. 12, p. 1693 – 1710. 

11.  Bae J., Chiao J.-C., Mizuno K., and Rutledge D. B. Metal mesh couplers using evanescent waves at millimeter and submillimeter wavelengths. International Journal of Infrared and Millimeter Waves, 1995, Vol. 16, No. 2, p. 377. 

12.  Camacho M., Boix R. R., and Medina F. Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays. Physical Review E, 2016, Vol. 93, p. 063312-1 – 063312-15. DOI: 10.1103/PhysRevE.93.063312  

13.  Ulibarri P. R. Metamaterials and extraordinary transmission structures applied to microwave, millimeter and terahertz waves devices. Thesis of Doctor of Philosophy. The Public University of Navarra, Spain, 2017, p. 18 – 23. 

14.  Hajian H., Ozbay E., Caglayan H. Beaming and enhanced transmission through a subwavelength aperture via epsilon-near-zero media. Nature, Scientific Reports, 2017, No. 7, p. 4741-1 – 4741-8.  http://www.nature.com/scientificreports  DOI: 10.1038/s41598-017-04680-y  

15.   Karpov I. A. and Shoo E. D. New equipment for microwave electric field visualization. Review of Scientific Instruments, 2012, Vol. 83, p. 074704-1 – 074704-5.  DOI: 10.1063/1.4737495  

 

For citation:
I. A. Karpov. The transmission of microwaves through a multilayer metamaterial-dielectric structure:  the near field and the far field. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 12. Available at http://jre.cplire.ru/jre/dec18/19/text.pdf

DOI  10.30898/1684-1719.2018.12.19