Journal of Radio Electronics. eISSN 1684-1719. 2023. №12
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.12.14
Small-sized radio-electronic digital module
for building a nodal seismic system interacting
with a UAV
I.V. Gorchakov 1, A.V. Neeshpapa 2, A.N. Antonov 2,
S.Y. Avdyukhina 2, A.I. Saveliev 3, S.N. Sergeyev 4
1 Moscow Institute of Physics and Technology
141701, Russia, Moscow region, Dolgoprudny, Institutsky per., 92 «R-sensors»
141701, Russia, Moscow region, Dolgoprudny, Likhachevsky pr., 4, p. 13 St. Petersburg Federal Research Center
199178, Russia, St. Petersburg, 14th Line V.O., 394 Research Institute of Applied Informatics and Mathematical Geophysics
of Immanuel Kant Baltic Federal University
236041, Russia, Kaliningrad, A. Nevskogo str., 14a, building 10
The paper was received December 11, 2023.
Abstract. Digital autonomous seismic systems (nodes) have become significantly widespread in recent years. The disadvantage of such systems is the inability to control the quality of the data received. Sharing the nodal system with drones allows for data quality control while maintaining the inherent advantages of nodal systems, such as flexibility in use and reliability. The work presents the result of creating a specialized digital node intended for joint use with drones. A molecular-electronic geophone with an extended operating frequency band of 1-300 was used as the primary sensitive element; the digital system provides autonomous high-bit recording of seismic data, transmission of data blocks to control their quality to drones and auto-calibration of recording channels.
Key words: seismic systems, UAV.
Financing: The study was supported by Russian Science Foundation (project №22-69-00231).
Corresponding author: Gorchakov Ivan Vladimirovich, gorchakov.iv@phystech.edu
References
1. Z. Zhu, Z. Wu, Z. Deng, H. Qin and X. Wang, “An Ocean Bottom Flying Node AUV for Seismic Observations”, 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 2018, pp. 1-5, https://doi.org/10.1109/AUV.2018.8729726
2. https://www.sercel.com/en/products/winghttps://www.sercel.com/ene
3. V.M. Agafonov, I.V. Egorov, and A.S. Shabalina, “Operating principles and technical characteristics of a small-sized molecular-electronic seismic sensor with negative feedback,” Seism. Instruments, vol. 50, no. 1, pp. 1–8, 2014.
4. http://r-sensors.ru/ru/products/geophones/MTSS-1001-rus/
5. F. ten Kroode, S. Bergler, C. Corsten, J. W. de Maag, F. Strijbos, and H. Tijhof, “Broadband seismic data – The importance of low frequencies,” GEOPHYSICS, vol. 78, no. 2, pp. WA3–WA14, Mar. 2013.
6. ADS131E04. https://www.ti.com/lit/gpn/ads131e04
7. ADR444. https://www.analog.com/media/en/technical-documentation/data-sheets/adr440_441_443_444_445.pdf
8. MAX-M8Q А1.4. https://www.u-blox.com/sites/default/files/MAX-M8-FW3_DataSheet_%28UBX-15031506%29.pdf
9. TG-2016 https://support.epson.biz/td/api/doc_check.php?dl=app_TG2016SMN&lang=en
10. Microcontroler CC3200. https://www.ti.com/lit/gpn/CC3200
11. MAX14502. https://www.analog.com/media/en/technical-documentation/data-sheets/max14502.pdf
12. FT232. https://ftdichip.com/wp-content/uploads/2020/08/DS_FT232R.pdf
14. Д. В. Пономаренко et al., “Диагностика методом естественных полей.pdf,” Приборы и системы разведочной геофизики, no. 2(77), pp. 81–92, 2023.
15. Peterson, J. (1993) Observations and Modeling of Seismic Background Noise. U.S.G.S, Open File Report, 93-322, 95 p.
For citation:
Gorchakov I.V., Neeshpapa A.V., Antonov A.N., Avdyukhina S.Y., Saveliev A.I., Sergeyev S.N. Small-sized radio-electronic digital module for building a nodal seismic system interacting with a UAV. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.14 (In Russian)