Journal of Radio Electronics. eISSN 1684-1719. 2023. 12
Contents

Full text (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.17

 

COLLECTIVE NATURE OF LOW-TEMPERATURE PHOTOCONDUCTIon
AND CONDUCTIon IN THE PEIERLS CONDUCTOR
ORTHORHOMBIC TaS3

 

V.E. Minakova, S.V. Zaitzev-Zotov

 

Kotelnikov IRE RAS

125009, Russia, Moscow, Mokhovaya str., 11, b.7

 

The paper was received November 29, 2023.

 

Abstract. This work summarizes the results of series of works devoted to the study of the mechanisms of low-temperature conduction and photoconduction in the Peierls conductor orthorhombic TaS3 (o-TaS3). We used the tools we discovered to change the relationship between the single-particle and collective components of low-temperature photoconduction and conduction in o-TaS3 – illumination and uniaxial stretching of the sample. Using them, we were able to separate single-particle and collective contributions and show that the collective contribution dominates both low-temperature conduction (T 100 K) and low-temperature photoconduction (T 45 K). In addition, the discovered analogy between the influence of illumination and stretching on low-temperature conduction and photoconduction made it possible to establish the dimension of charge density wave (CDW) pinning in samples of different cross-sections at low temperatures. It was found that for all samples, including bulk ones, one-dimensional pinning is observed at temperatures T < 40 K, and it also has a collective character.

Key words: charge-density-wave, non-linear conduction, collective conduction, solitons, photoconduction.

Financing: The research was carried out within the framework of the state assignment of the Kotelnikov IRE RAS No. 122042000064-1.

Corresponding author: Minakova Valeria Evgen’evna, mina_cplire@mail.ru

References

1. Monceau P., Electronic crystals: an experimental overview // Adv. Phys., 61, 325 (2012). https://doi.org/10.1080/00018732.2012.719674

2. Gruner G., The dynamics of charge-density waves // Rev. Mod. Phys. 60, 1129 (1988). https://doi.org/10.1103/RevModPhys.60.1129

3. Brasovskii S.A., Electronic excitation in the Peierls-Frőhlich state // Pis’ma v ZhETP 28, 656 (1978); [JETP Letters, 28, 606 (1978)]. http://jetpletters.ru/ps/1581/article_24247.pdf

4. Brazovskii S.A., Electronic excitations in the Peierls-Frolich state // Zh. Eksp. Teor. Fiz. 78, 677 (1980); // Sov. Phys. JETP 51, 342 (1980)] https://doi.org/10.1142/9789814317344_0024

5. Brasovskii S., Brun C., Wang Z.-Z., Monceau P., Scanning-Tunneling Microscope Imaging of Single-Electron Solitons in a Material with Incommensurate Charge-Density Waves // Phys. Rev. Lett., 108, 096801. (2012). https://doi.org/10.1103/PhysRevLett.108.096801

6. Latyshev Yu.I., Monceau P., Brasovskii S., Orlov A.P., Fournier T., Observation of Charge Density Wave Solitons in Overlapping Tunnel Junctions // Phys. Rev. Lett., 95, 266402 (2005). https://doi.org/10.1103/PhysRevLett.95.266402

7. Takoshima T., Ido M., Tsutsumi T., Sambongi T., Honma S., Yamaya K., Abe Y., Non-ohmic conductivity of TaS3 in the low-temperature semiconducting regime // Sol. State Commun., 35, 911 (1980). https://doi.org/10.1016/0038-1098(80)90987-4

8. Zatsev-Zotov S.V., Minakova V.E., Photoconduction and photocontrolled collective effects in the Peierls conductor TaS3 // Pis’ma v ZhETP, 79, 680 (2004). https://doi.org/10.1134/1.1787104

9. Zybtsev S.G., Pokrovskii V.Ya, Strain-induced formation of ultra-coherent CDW in quasi one-dimensional conductors // Physica B 460, 34 (2015). https://doi.org/10.1016/j.physb.2014.11.035

10. Wang Z.-Z., Salva H., Monceau P., Renard M., Roucau C., Ayroles R., Levy F., Guemas L., Meerschaut A., Incommensurate-commensurate transition in TaS3 // J. Phys.-Lett., 44, L311 (1983). https://doi.org/10.1051/jphyslet:01983004408031100

11. Inagaki K., Tsubota M., Higashiyama K., Ichimua K., Tanda A., Yamamoto K., Hanasaki N., Ikeda N., Nogami Y., Ito T., Toyokawa H., Field-Induced Discommensuration in Charge Density Waves in o-TaS3 // J. Phys. Sos. Jpn., 77, 093708 (2008). https://doi.org/10.1143/JPSJ.77.093708

12. Zatsev-Zotov S.V., Minakova V.E., Evidence of Collective Charge Transport in the Ohmic Regime of oTaS3 in the Charge-Density-Wave State by a Photoconduction Study // Phys. Rev. Lett., 97, 266404 (2006). https://doi.org/10.1103/PhysRevLett.97.266404

13. M.E. Itkis, F.Ya. Nad’, Fundamental absorption edge of the Peierls insulator of orthorhombic tantalum trisulfide // JETP Letters, 39, 373 (1984). http://jetpletters.ru/ps/1300/article_19642.pdf

14. V.F. Nasretdinova, S.V. Zatsev-Zotov, Electric-field-dependent energy structure of quasi-one-dimensional conductor oTaS3 // JETP Lett., 89, 514 (2009). https://doi.org/10.1134/S0021364009100099

15. Ogawa N., Shiraga A., Kondo R., Kagoshima S., Miyano K., Photocontrol of Dynamic Phase Transition in the Charge-Density Wave Material K0.3MoO3 // Phys. Rev. Lett., 87, 256401 (2001). https://doi.org/10.1103/PhysRevLett.87.256401

16. Zaitsev-Zotov S.V., Finite-size effects in quasi-one-dimensional conductors with a charge-density wave // Physics – Uspekhi, 47, 533 (2004). https://doi.org/10.1070/PU2004v047n06ABEH001675

17. Zaitsev-Zotov S.V., Minakova V.E., Photoconduction and photocontrolled collective phenomena in Peierls conductor TaS3 // J. Phys. IV 131 95 (2005). https://doi.org/10.1051/jp4:2005131021

18. Minakova V.E., Taldenkov A.N., Zaitsev-Zotov S.V., Soliton Photoconduction in the Charge-density-wave Conductor Orthorhombic TaS3 // JETP Letters, 110, 200 (2019). https://doi.org/10.1134/S0021364019150037В

19. Preobrazhensky V. B, Taldenkov A. N., Kal’nova I.Yu., Electrical conductivity of the uniaxially strained quasi-one-dimensional Peierls insulator TaS3 // JETP Letters, 40, 944 (1984). http://jetpletters.ru/ps/1256/article_18987.pdf

20. Lear R. S, Skove M.J., Stillwell E.P., Brill J.W., Stress dependence of the charge-density-wave transitions in NbSe3 and o-TaS3 // Phys.Rev. B 29, 5656 (1984). https://doi.org/10.1103/PhysRevB.29.5656

21. Minakova V.E., Nasretdinova V.F., Zaitsev-Zotov S.V., Charge-density waves physics revealed by photoconduction // Physica B: Condensed Matter, 460,185 (2015). https://doi.org/10.1016/j.physb.2014.11.064

22. Ogawa N., Miyano K., Brazovskii S.A., Optical excitation in the creep phase of plastic charge-density waves // Phys. Rev. B 71, 075118 (2005). https://doi.org/10.1103/PhysRevB.71.075118

For citation:

Minakova V.E., Zaitsev-Zotov S.V. Collective nature of low-temperature photoconduction and conduction in Peierls conductor orthorhombic TaS3. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.17